

EGU21-15045

HOW DO CONCENTRATION-DISCHARGE RELATIONS VARY AMONG RAINFALL-RUNOFF EVENTS? AN ANALYSIS FOR THE RESSI EXPERIMENTAL CATCHMENT (ITALIAN PRE-ALPS)

Giulia Zuecco, Chiara Marchina, Ylenia Gelmini, Anam Amin, Ilja van Meerveld, Daniele Penna, Marco Borga

giulia.zuecco@unipd.it

Motivation

- Understanding discharge and solute responses is pivotal for water resources management and pollution mitigation measures
- Previous studies that analyzed concentration-discharge (C-Q) relations using high temporal resolution tracer data collected during rainfall-runoff events have shown that C-Q relations may vary for different events and depend on season, event characteristics or antecedent wetness conditions

Compare the concentration-discharge relations for different tracers

Characterize the hysteretic relations between discharge and tracer concentrations at the event timescale

Determine whether the changes in hysteresis can be explained by event characteristics

Study area: Ressi catchment (Italian pre-Alps)

Area (km²)	0.02
Elevation range (m a.s.l.)	598-721
Mean slope (°)	31

Average annual precipitation (1992-2007) (mm)	1695
Average annual temperature at 597 m a.s.l. (1992-2007) (°C)	9.7

Hydrometric and tracer monitoring

Information on the catchment and tracer data can be found in Penna et al. (2015), Marchina et al. (2020) and Zuecco et al. (2021)

Hysteresis index and classes

- Hysteresis analysis for concentrationdischarge (C-Q) relations for 20 rainfallrunoff events between 2015 and 2018
- Hysteresis index (h) and classification based on Zuecco et al. (2016)
 - Minimum-maximum normalization of discharge (x axis) and concentration (y axis) at the event timescale

Concentration-discharge (C-Q) relations

Colour legend: samples collected during event starting on 13/07/2016, event starting on 05/11/2017, all other events

Discharge and tracer dynamics

- Different antecedent wetness conditions
- Total event rainfall: 11-132 mm
- Runoff coefficients: 0.6-25.2%
- Different temporal dynamics of concentrations in stream water (e.g., Cl increases at the beginning of a rainfallrunoff event, whereas Ca and EC decrease)

Hysteresis identification

- Hysteretic relations between discharge and tracer concentrations
- Flushing and generally clockwise hysteresis: stable water isotopes, Cl and K
- Dilution and generally anticlockwise hysteresis: SO₄, EC, Na and Ca

The larger the absolute value of the hysteresis index (|h|), the larger the size of the loop

Frequency of hysteresis classes

ASI: antecedent soil moisture index, based on Haga et al. (2005) P: event precipitation

Size of the hysteresis

(represented by |h|) is likely affected by antecedent wetness conditions and the magnitude of the rainfall event (e.g., Ca as tracer)

- No clear relations between event characteristics and C-Q hysteresis for Cl, NO₃ and K
- Significant positive correlation between the expansion of the stream network during the event and the maximumminimum concentration for NO₃ and K

Concluding remarks

- NO₃, K and Cl concentrations increased in stream water at the onset of rainfallrunoff events, likely due to a flushing of deposited solutes from the dry parts of the stream channel and the riparian area (→ expansion of the stream network during the event)
- Event characteristics alone cannot explain the changes in concentration-discharge (C-Q) hysteresis
- Size of the hysteresis is likely affected by antecedent wetness conditions (e.g., SO₄ and Na) and the magnitude of the rainfall event (e.g., for Ca)

References:

Haga et al., 2005. Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. *Water Resour. Res., 41, W12410.* DOI: 10.1029/2005WR004236

Marchina et al., 2020. Alternative methods to determine the δ^2 H- δ^{18} O relationship: An application to different water types. *J. Hydrol., 587, 124951*. DOI: 10.1016/j.jhydrol.2020.124951

Penna et al., 2015. Seasonal changes in runoff generation in a small forested mountain catchment. *Hydrol. Process., 29, 2027-2042.* DOI: 10.1002/hyp.10347

Zuecco et al., 2016. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. *Hydrol. Process., 30, 1449-1466.* DOI: 10.1002/hyp.10681

Zuecco et al., 2021. Ressi experimental catchment: ecohydrological research in the Italian pre-Alps. *Hydrol. Process., 35, e14095.* DOI: 10.1002/hyp.14095