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Reduced order models and Koopman formalism

Given the following state space model{
żt = f(zt)
xt = H(zt,Ωt, εt)

(1)

The resolution of the dynamical equation for forecast and data
assimilation is challenging
The main goal of all this work: reduced order models
Koopman representations can provide a good short term forecast,
and are suitable for data assimilation
Data driven Koopman for forecast and data assimilation !
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Koopman formalism

Source: Brunton et al. (2016)



Koopman formalism

Can new artificial intelligence techniques help finding good finite
dimensional approximations of this operator ?
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Koopman formalism
Modern state of the art

Let us assume the following state space model{
żt = f(zt)
xt = H(zt,Ωt, εt)

(2)

Dynamic Mode
Decomposition
(DMD) (Schmid

(2010)).

ẋt = Axt

Extended Dynamic
Mode Decomposition
(EDMD) (Li et al.

(2017)).

u̇t = Aut with
uT
t = [xT

t , fp(xt)
T ]

Deep learning based
approaches (Lusch

et al. (2017))

u̇t = Aut with
uT
t = fNN (xt)

T

Does not account for missing processes or use Takens
The augmented space depends on predefined parametric family.
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Proposed augmented Koopman framework

Embedding

Observations

Unknown dynamics

Prediction

Optimization
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Unknown dynamics
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Proposed augmented Koopman framework
WMOP case study

The considered case study
area.

WMOP simulation
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Proposed augmented Koopman framework
WMOP case study

Can provide a good short term forecast on chaotic dynamics.

WMOP Projection Koopman
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Spatio-temporal interpolation of the Seal Level Anomaly
Along track data sampling gap

Source: esa.int

These observations involve very high missing data rates
The spatio-temporal interpolation of SLA fields from along track
data involves several altimeters.
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Spatio-temporal interpolation of the Seal Level Anomaly
Along track data sampling gap

Source: Ballarotta et al. (2019)

The resolved scales from operational products using state of the
art optimal interpolation are large.

Rely on new sensing missions Exploit learning based approaches
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Spatio-temporal interpolation of the Seal Level Anomaly
State of the art

The spatio-temporal SLA interpolation problem can be defined as :

Inversion method

Plug-and-play
schemes.

End-to-end learning
schemes.

End-to-end
sequential filtering.
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Ocean surface data assimilation
Augmented Koopman Kalman filter

Reconstruction Gap free observationsObservations

End-to-end Kalman 
Filter with trainable 

Augmented 
Koopman model

Error

SGD

A linear model that propagates the observations in time
A Kalman filter that assimilates along-track data to the model
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Augmented Koopman Kalman filter
OSSE based case study

Test

Training

OSSE based on realistic high-resolution ocean simulation data in
the Western Mediterranean sea from WMOP configuration (Juza
et al. (2016)).
The data from January 2009 to December 2014 were used as
training and we tested our approach on the first 347 days of the
year 2015.
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Augmented Koopman Kalman filter
OSSE based case study

Sampling from Real 
Satellite sampling

Test

Training

xΩt,t is generated from real satellite tracks from a four-altimeter
sampling configuration in 2014.
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Augmented Koopman Kalman filter
WMOP case study, results vs OI and AnDA

Quantitative analysis, RMSE of the reconstructed fields and their
gradients.

Model Entire map Missing data areas

RMSE Correlation RMSE Correlation

SLA(m) ∇SLA(m°) SLA ∇SLA SLA(m) ∇SLA(m/°) SLA ∇SLA

Proposed, E2EKF 0.021 0.0041 96.22% 77.51% 0.022 0.0043 97.95% 79.59%
LAF-EnKF 0.023 0.0043 95.79% 75.78% 0.025 0.0044 97.51% 77.54%
OI 0.036 0.0062 90.84% 60.01% 0.037 0.0063 94.50% 62.98%
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Augmented Koopman Kalman filter
WMOP case study, results vs OI and AnDA

Qualitative analysis, visual reconstruction example on the
February 19, 2015.
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Takeaway messages
We proposed a new algorithm for the identification of linear
approximations of high dimensional non linear dynamics.
The proposed framework is relevant in the forecasting of various
dynamical regimes
The linearity of the model makes it relevant when considering
spatio-temporal interpolation applications
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Conclusion

Better then non-linear filtering ?

How to estimate model and observation errors ?
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