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Reduced order models and Koopman formalism

Given the following state space model
ze = f(z)
{ x¢ = H(ze,Q,e€r) @)

The resolution of the dynamical equation for forecast and data
assimilation is challenging

The main goal of all this work: reduced order models

Koopman representations can provide a good short term forecast,
and are suitable for data assimilation

Data driven Koopman for forecast and data assimilation !
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Koopman formalism

Rm

[
g:Tp = Yy

Ki Yr = Yrp

Source: Brunton et al. (2016)



Koopman formalism

Vou. 17, 1931 MATHEMATICS: B. 0. KOOPMAN 35
HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN
HILBERT SPACE
By B. 0. Koopmax

DEPARTMENT OF MATHEMA CoLuMBIA UNIVERSITY

In recent years the theory of Hilbert space and its linear transformations
has come into prominence.! It has been recognized to an increasing
extent that many of the most important departments of mathematical
physics can be subsumed under this theory. In classical physics, for
example in those phenomena which are governed by linear conditions—
linear differential or integral equations and the like, in those relating to
harmonic analysis, and in many phenomena due to the operation of the
laws of chance, the essential rle is played by certain linear transformations
in Hilbert space. And the importance of the theory in quantum me-
chanics is known to all. It is the object of this note to outline certain
investigations of our own in which the domain of this theory has been
extended in such a way as to include classical Hamiltonian mechanics,
or, more generally, systems defining a steady n-dimensional flow of a
fluid of positive density.

Consider the dynamical system of n degrees of freedom, the canonical
equations of which are formed from the Hamiltonian H(g, p) = H(g,
vour Qu Py .., Pu), which we will assume to be single-valued, real, and

m Can new artificial intelligence techniques help finding good finite
dimensional approximations of this operator ?
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m Let us assume the following state space model

Z =
Xt =

Dynamic Mode
Decomposition
(DMD) (Schmid
(2010)).

).(t = AXt
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Koopman formalism
Modern state of the art

m Let us assume the following state space model

Zt f(z¢)
{ xt = H(ze, O, €r) @)
Dynamic Mode Extended Dynamic
Decomposition Mode Decomposition
(DMD) (Schmid (EDMD) (Li et al.
(2010)). (2017)).
).(t = AXt l-lt = AUt with

uf =[x, fp(xe)"]
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Koopman formalism
Modern state of the art

m Let us assume the following state space model

zt = f(zt)

{ xt = H(ze, O, €r) @)
Dynamic Mode Extended Dynamic
Decomposition Mode Decomposition Deep learning based
(DMD) (Schmid (EDMD) (Li et al. approaches (Lusch

(2010)). (2017)). et al. (2017))
).(t = AXt 1-1,5 = Aut with 1:lt = Aut with
uf =[x}, fp(xt)"] uf = fywn(xe)"
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Koopman formalism
Modern state of the art

m Let us assume the following state space model

zt = f(z)

{ xt = H(ze, O, €r) @)
Dynamic Mode Extended Dynamic
Decomposition Mode Decomposition Deep learning based
(DMD) (Schmid (EDMD) (Li et al. approaches (Lusch

(2010)). (2017)). et al. (2017))
).(t = AXt flt = Aut with 1:lt = Aut with
uf =[x}, fp(xt)"] uf = fywn(xe)"

m Does not account for missing processes or use Takens

m The augmented space depends on predefined parametric family.
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Proposed augmented Koopman framework

Prediction

Observations
u” = (M) v

{lllf, = Agu:

H(ze, 2, et) x = M HG(ur))

Embeddi
Unknown dynamics mbedding

e’ = (M) ¥
{ﬁg = Agu;
xe = M~ HG(w)) L
min min xt — MH(G (up_qelrA0) 2
= [ mn in 3 (G (uemze®A0)) |
+ Bllug — uy_yelA0)|2
Optimization
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Proposed augmented Koopman framework

Observations Prediction

u = (MG v

{ﬁt = Ague

H(ze, Qser) x¢ = MG (ur))

£ )
Unknown dynamics mbedding

w” = M)y

{l’u = Apuy
xt = M (Glw))

T
: : _ MY (hAg) 2
— m;n(r;:?lg\\xt MHG (upmre®40) ) |
(hAe)H2

+ Bllue —ug—1e

Optimization
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WMOP simulation

m The considered case study
area.

Time: 0.00 Day
=
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Proposed augmented Koopman framework
WMOP case study
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m Can provide a good short term forecast on chaotic dynamics.

WMOP Projection Koopman
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Spatio-temporal interpolation of the Seal Level Anomaly
Along track data sampling gap

Source: esa.int

m These observations involve very high missing data rates

m The spatio-temporal interpolation of SLA fields from along track
data involves several altimeters.
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Spatio-temporal interpolation of the Seal Level Anomaly
Along track data sampling gap

Effective spatial resolution DT2018
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Source: Ballarotta et al. (2019)

m The resolved scales from operational products using state of the
art optimal interpolation are large.
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m The resolved scales from operational products using state of the
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Rely on new sensing missions
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Source: Ballarotta et al. (2019)

m The resolved scales from operational products using state of the
art optimal interpolation are large.

Rely on new sensing missions Exploit learning based approaches

Ouala et al. EGU 2021 11 /22
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Spatio-temporal interpolation of the Seal Level Anomaly
State of the art

The spatio-temporal SLA interpolation problem can be defined as :
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Plug-and-play
schemes.
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State of the art
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Plug-and-play End-to-end learning
schemes. schemes.
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Spatio-temporal interpolation of the Seal Level Anomaly
State of the art

*‘ === | |nversion method | ===

Plug-and-play End-to-end learning End-to-end
schemes. schemes. sequential filtering.
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Ocean surface data assimilation

Augmented Koopman Kalman filter

e % 9 —
- %. \%
End-to-end Kalman N ) &
Filter with trainable

— - -
‘ 'a 3
Augmented , - \ ) = — rror
Koopman model — - e ’
i B A
L~ D

m A linear model that propagates the observations in time

m A Kalman filter that assimilates along-track data to the model
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Augmented Koopman Kalman filter
OSSE based case study

m OSSE based on realistic high-resolution ocean simulation data in
the Western Mediterranean sea from WMOP configuration (Juza
et al. (2016)).

m The data from January 2009 to December 2014 were used as
training and we tested our approach on the first 347 days of the
year 2015.
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Augmented Koopman Kalman filter
OSSE based case study

Sampling from Real
Satellite sampling

m Xq,: is generated from real satellite tracks from a four-altimeter
sampling configuration in 2014.

Ouala et al. EGU 2021 14 / 22
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Augmented Koopman Kalman filter
WMOP case study, results vs OI and AnDA

m Quantitative analysis, RMSE of the reconstructed fields and their
gradients.

Model Entire map Missing data areas

RMSE Correlation RMSE Correlation

SLA(m) VSLA(m’) SLA  VSLA SLA(m) VSLA(m/) SLA  VSLA

Proposed, E2EKF  0.021 0.0041 96.22% 77.51%  0.022 0.0043 97.95% 79.59%
LAF-EnKF 0.023 0.0043 95.79%  75.78% 0.025 0.0044 97.51%  77.54%
o1 0.036 0.0062 90.84%  60.01% 0.037 0.0063 94.50%  62.98%
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m Qualitative analysis, visual reconstruction example on the
February 19, 2015.

Va0
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Takeaway messages

m We proposed a new algorithm for the identification of linear
approximations of high dimensional non linear dynamics.

m The proposed framework is relevant in the forecasting of various
dynamical regimes

m The linearity of the model makes it relevant when considering
spatio-temporal interpolation applications

Ouala et al. EGU 2021 17 /22
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Conclusion and perspectives

Conclusion

Better then non-linear filtering ?

How to estimate model and observation errors ?
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