

Near real time high resolution mapping of flood extent in west African sites

Ines Cherif, Georgios Ovakoglou, Thomas K. Alexandridis, Foster Mensah, Issa Garba

Methodology

Flow chart of the approach for mapping floods at high resolution using Sentinel-1 images in West-Africa

Data:

- Sentinel-1 satellite images prior, during and after the flood event (GRD, IW, VV polarization)

- LULC map

- Height Above Nearest Drainage map (HAND)

Case studies

Flood event in Niger:

Location: around Niamey

Period: 31/8/2017

Cause: heavy rain

Extent: 353ha⁽¹⁾

Damage: houses destroyed, roads cut⁽¹⁾

Land cover in the flooded area: Urban, bare land, rocks, dunes, glacis, cropland $^{\rm (2)}$

Flood event in Ghana:

Location: Upper east region

Period: 25/8/2018

Frequency: annual

Cause: releases of the Bagre dam in Burkina Faso and long-term rainfall

Damage: deaths, people displaced, \sim 11,960ha of farmland affected ⁽³⁾, infrastructure destroyed

Land cover in the flooded area: Agricultural land, riparian vegetation, bare surface $\ensuremath{^{(4)}}$

(1) Copernicus EMS <u>https://emergency.copernicus.eu/mapping/list-of-components/EMSR235</u>.

- (2) Observatoire du Sahara et du Sahel, Atlas des cartes d'occupation des sols, Niger, 2015. http://www.oss-online.org/rep-sahel.
- (3) National Disaster Management Organisation (NADMO) <u>https://www.nadmo.gov.gh</u>.

(4) Nsor, Collins & Ashiagbor, George & Danquah, Emmanuel. (2019). Quantifying Recent Floodplain Vegetation Change along the White Volta River in the Northern Region of Ghana.

Flood mapping in Niger

Flood event: Niamey, Niger (Sep 2017)

- Reference data from Copernicus Emergency Management System (EMS) derived from Pleiades-1A and GeoEye.

Flood monitoring in Ghana

Flood event: Upper East region, Ghana (Aug - Sep 2018)

This project has received funding from the European Union's Horizon 2020 Research and Innovation Framework Programme under grant agreement No 774652

Results assessment

- Quantitative assessment of the flood maps in Niamey based on Copernicus EMS data.
- River Niger well detected in all S1 images. Major flood spots detected along riverbanks.
- Presence of extended urban area and dunes is challenging. Method was tested with two pre-flood dates. Masking of dunes and glacis required to limit false alarms together with HAND information.
- Similar overall accuracy of 0.92 independently of the S1 pre-flood image used.
- Comparison to Sentinel-2 based results using MNDWI index (similar OA, higher recall, lower true negative rate). S2-based flood maps are difficult to produce on a systematic basis due to cloud cover during the flood period. Lower resolution of 20m.
- Several missed detections mainly with S1 but some detection failures are common with S2.
- False alarms with both S1 and S2 data. S2 overestimating the flood extent area.
- Some errors due to the long gap between the two VHR reference images (May to Sept).

- Flood maps in Ghana were validated by a local expert. Possibility to monitor the flood extent with multiple S1 SAR images.

- S1-based flood maps were produced at 10m resolution in two study sites in Niger and Ghana (riverine flood events).

- Using free and frequently available data major flood spots could be detected.
- Possibility to rapidly map and monitor floods in NRT.
- Synergies with the Mifmass project and GMES & Africa (Database of flood events).

