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Linking steps

Seismo-thermal-mechanical
model captures geodynamics
and seismic cycle wan zeist et al, 2019)

Dynamic rupture modeling of a
single earthquake

Time-depentend co-seismic
seafloor displacement

Non-linear hydrostatic tsunami
propagation & inundation
model

Workflow adapted from Madden et al. 2020
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Initial earthquake conditions

Fault geometry evolves
during long-term subduction
ProCess (van Zelst et al., 2019)
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On fault stresses in 3D
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Fault geometry in 2D
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On-fault rupture evolution
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On-fault rupture evolution
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We observe
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Seafloor displacement is filtered and used as time-
dependent input for tsunami model sam(oa)*2-flash
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Apply Fourier filter to separate the significant frequency-wavenumber coefficients
of the permanent displacement from the ones of seismic waves

We erase seismic waves from the seafloor perturbation by designing a kernel to
zero out the radial symmetric waves in the frequency-wavenumber representation
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Tsunami setup

Linear sloping beach

toe at x = 500 km with an inclination of 5%

coastline is located at x = 540 km
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Seasurface height linear and
complex coast

2C ssh [m]

ls Linear sloping beach:
- 4 ssh max. 6.5 meter
. Complex beach
M ’ geometry:
IZ ssh max. ~8 meter
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Co-seismic ocean response
phases
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In o next step we

Increase Poisson's ratio from 0.25 to 0.3
- model 5

Triple fracture energy by increasing the critical slip weakening
distance Dc from 0.1t0 0.3
- model 6

ChEESE 13




Dynamic Rupture results

Model 3B (reference model, unchanged). supershear in updip direction
Model 5 (increased fracture energy): low rupture speed
Model 6 (increased Poisson'’s ratio): supershear in updip direction
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Dynamic Rupture results
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Model 3B: high peak slip
rate and low final slip
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Summary

Supershear is triggered at topographic highs
Barely a difference in rupture dynamics for different hypocenter depths

Minor bimaterial effects

Higher Poisson's ratio facilitates slip and leads to higher seafloor uplift and
greater tsunami amplitude

Higher fracture energy = tsunami earthquake with low rupture velocity, high
amount of shallow slip and greatest tsunami

(Wirp et al., Front. Earth Sci. 2020)
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Future worst-case DR-tsunami
scenarios should include

Complex coastline

Earthquake with low rupture speed and accumulated shallow
slip

Seafloor bathymetry to account for shoaling effect
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