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Introduction

e Earth's magnetic field is predominantly an axial dipole.

e |t is generated by dynamo action in the Earth's core.

e The driving force for the dynamo is a combination of thermal and compositional
convection.

e Studies such as Sreenivasan and Jones (2011) and Sreenivasan and Kar (2018)
indicate the importance of growth of kinetic helicity in the generation and
sustenance of dipole.

e Ranjan and Davidson (2018) highlight the importance of inertial waves in
segregation and distribution of helicity in dynamo systems.



Objective of study

e To study the growth of a small intensity 'seed’ dipole field to form a large scale
dipole field.

e Comparison of the dynamics involved in the formation of a dipole for a nonlinear
and kinematic (where Lorentz force is ignored in the momentum equation)
dynamo.

e Exploration of a wave mechanism in the formation of a dipole in nonlinear

dynamos.



Governing equations

The non-dimensional governing equations are given as follows
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Symbols

Symbol Quantity Parameter Definition
u Velocity Pr v/Kk
T Temperature Pm v/n
B Magnetic field KV
j Current density E v/2QL?
Vp* Modified pressure gradient Ra gaATL/2Qk
A Bo/v/2Qu0m
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Evolution of uz
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Figure 2: Root mean square value of u, for two

ranges of spherical harmonic degree / < 30 (red) and
I > 30 (blue) in a dynamo simulation studying growth

of seed field. The parameters are Ra = 400,
E=12x10"% Pm=Pr=1.

e Increase of magnetic field intensity is
accompanied by an increase of the
convective velocity u; in the energy

containing scales.

e Energy is extracted from scales
smaller than the energy injection
scale.

e Wave excitation is responsible for
the excitation of convection in the
large scales.



MAC force balance

e The generation of helicity requires a
. (Sreenivasan and Jones, 2011)
075 balance between the Lorentz,
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050 Coriolis and buoyancy forces.
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e Coriolis and buoyancy force balance
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each other in large parts of the shell.
Figure 3: (a) and (b): Sections at z = 0.1 showing

black patches where Lorentz force and Coriolis force o Where magnetic field is strong, the
(a) and buoyancy force and Coriolis force (b) are

balancing each other respectively in the z-vorticity
equation for | < 30. Parameters are Ra = 400, g = 1, two forces. Here, slow MAC waves
E=12x10"6.

Lorentz force can balance the other

can be produced.



MAC waves

MAC waves can be broadly classified in two: fast (high frequency) and slow waves (low

frequency).

The frequencies are obtained as the roots by solving for the dispersion relation:
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2 sets of roots are obtained corresponding to the fast and slow waves.

The non-dimensional fundamental frequencies are as follows:



Frequency diagram
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Figure 4: Fundamental frequencies plotted against
against time for the flow field for the scales | < 30.
w2 -blue, w?-red, w2-black, -w2-green w%—magenta
respectively. The vertical indicates time at which slow
wave frequency becomes real. Slow waves are excited
at time ty = 0.047. The parameters are Ra = 400,
g=1E=12x10"% Pm=Pr=1.

e Slow MAC waves are excited only
when the Alfvén frequency exceeds
the buoyancy frequency.

e This happens when the magnetic
field has grown to sufficient strength
to excite these waves and cause a
helicity growth.

e Fast waves are excited from early
times also, but there is not much
helicity growth at these times.
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Figure 5: (a): Fundamental frequencies plotted
against azimuthal wave-number m at ty = 0.275.
w2-red, w2 -blue, -w2-yellow,w?2-black respectively.
The shaded area shows the scales wherehelicity is
generated. (b): Contribution to the dipole given by
J BR.(V x (u x B)) plotted as a function of
wavenumber m.

e The scales at which helicity is
generated correspond to that of
scales where slow MAC waves are
excited and are distinct from fast

waves (i.e. when wp, < we).

e Dipole contribution given by
[ BE.(V x (u x B)) (Buffet and
Bloxham, 2002) occurs over the
scales at which helicity is excited
over the non-magnetic state.



Group velocity measurements
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Figure 6: (a): Contour plots of i, for the time interval t; = 0.08 — 0.085(a)) for the scales / < 39 and
25 < m < 38. (b): Contour plots of i for the time interval ty = 0.274 — 0.276((a)-(b)) for the scales / < 31
and m < 23. The scales where helicity is generated is chosen for the group velocity measurements. The group

velocity measurements: 1050 (a) and 4864 (b) matches closely with the estimated group velocity: 1257 (a)
4388 (b).



Conclusion

e Growth of kinetic helicity is due to slow MAC waves which are excited as the
magnetic field grows in strength.

e Peak dipolar contribution occurs at scales which match with those at which
helicity is generated.

e In kinematic dynamo simulations, only inertial waves are present. They are not
enough to support the dipole.

e In nonlinear dynamo simulations, both slow and fast waves are present.

e The timescale of growth of convection and formation of dipole points towards
importance of slow waves in forming dipole.
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