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Wellbore stability problem
One of the key problems of geomechanics is the determination of technological 

parameters, for which the wellbore will maintain its stability. 

Different rock’s properties (modulus of elasticity, Poisson's ratio, density, friction and 
dilatancy angles, strength and yield strengths for tension and compression, adhesion, porosity, 
permeability, compressibility, etc) should be taken into account. 

In addition, the rock is prestressed, which is determined by the components of the 
generally anisotropic nonuniform stress tensor.

When drilling, in general, a bit and mud
generates a pressure on the rock, thereby
deforming it and redistributing the stresses
(superposition of generally finite strains), 
causing the reaction of the rock on the applied
impact. This may lead to the formation and 
development of localized zones of plastic 
shear bands.



Math model
Nonstationary poroelastoplasticity, two-way coupling

(O. Coussy’s “Poromechanics”, 2004; S. Pride, 2005):

𝑤 = 𝜙(𝑈 − 𝑢)
𝜌 = 𝜌𝑠(1 − 𝜙) + 𝜌𝑓𝜙
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u – displacement vector of solid skeleton, 

U – displacement vector of saturating fluid, 

- porosity,

- densities of porous solid skeleton and saturating fluid, 

- viscosity of saturating fluid,

- tortuosity of pore channels,

- dependency of permeability on porosity (Kozeny-Carman equation), 

 
 𝛻 ⋅ 𝜎 = 𝜌(  𝑢 + 𝑑𝑢  𝑢) + 𝜌𝑓(  𝑤 + 𝑑𝑢𝑤  𝑤

−𝛻𝑝𝑓 = 𝜌𝑓(  𝑢 + 𝑑𝑢𝑤  𝑢) +
𝛼𝜌𝑓

𝜙
(  𝑤 + 𝑑𝑤  𝑤) + 𝐹𝑓𝑟

𝐹𝑓𝑟 =
𝜂

𝑘
 𝑤 − interphase friction force (for low frequency case)

𝑑𝑖 – damping parameters.



Constitutive relations:

b=1-Kd /Ks – Biot-Willis coefficient

- drained bulk modulus of solid skeleton

- drained shear modulus of solid skeleton

с – consolidation parameter

λ =Kd -2μ/3 – Lame parameter

Ks – bulk modulus of mineral grains,

μs – shear modulus of mineral grains,

Kf – bulk modulus of fluid,

- Biot modulus,

- change in fluid volume content per unit volume of mixture (change of fluid content)

Material model
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Dynamic porosity models:
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  (S. Pride, 2005)
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(Coussy“Poromechanics”,2004) 

Matrix porosity depends on volumetric strains and 
initial porosity:
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For small strains: 1 2 3v     



Additive decomposition in case of small strains:                                                        

Poroelastoplastic model
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Plastic flow rule:                                                        
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Non-associative Drucker-Prager model:    

- plastic criterion

- plastic potential
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φ – effective internal friction angle, 

ψ – effective dilatation angle, 

c – cohesion.



Weak formulation
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Basis functions — Lagrange polynomials (reconstructed based on roots of Legendre 
polynomials), providing a spectral convergence in space

Spectral element method (SEM)

Lagrange polynomials
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Function decomposition using the basis functions

GLL cubature rule

Orthogonal basis using GLL-quadrature



Diagonal mass matrix
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Weak formulation for the inertia term:



Discretization requirements
Maximization of the shortest edge in the unstructured SEM 
mesh used for the discretization of generally curvilinear 
boundary of a stress concentrator

CFL condition:

max

min
e

e

e

h
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Isoparametric SEM

Mapping of a reference square element onto curvilinear high order SEM-element using 

SEM basis functions– isoparametric approximation and discretization.
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Spectral convergence of SEM 
(superconvergence, Bernardi, 
Maday 1992)
𝑢 − 𝑢ℎ ≤ 𝐶ℎ𝑁𝑒−𝑁 in

𝐻1-norm



Time integration scheme

Solution (displacement vectors u, w) at (n+1)-th time step is sought in the following way using explicit Newmark scheme of 
2nd order in time:
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The scheme is conditionally (according to CFL condition) stable under 0.5 
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𝑀𝑢 =  

𝛺

𝑁𝑇𝜌𝑁𝑑𝛺;𝑀𝑢𝑤 =  

𝛺

𝑁𝑇𝜌𝑓 𝑁𝑑𝛺;𝑀𝑤 =  

𝛺

𝑁𝑇
𝛼𝜌𝑓

𝜙
𝑁𝑑𝛺

𝐶𝑢 =  

𝛺

𝑁𝑇𝜌𝑑𝑢 𝑁𝑑𝛺; 𝐶𝑢𝑤 =  

𝛺

𝑁𝑇𝜌𝑓𝑑𝑢𝑤 𝑁𝑑𝛺; 𝐶𝑤 =  

𝛺

𝑁𝑇
𝛼𝜌𝑓

𝜙
𝑑𝑤 𝑁𝑑𝛺

𝐾𝑢(u,w) =  Ω𝜎(𝛻𝑢, 𝛻𝑤) ⋅ 𝛻𝑁 dΩ; 𝐾𝑤 u,w = − 
Ω
𝑝𝑓 𝛻𝑢, 𝛻𝑤 𝛻𝑁 dΩ +  

𝛺

𝑁𝑇 𝜂

𝑘
𝑁𝑑𝛺

∆𝑤

∆𝑇
;

∆𝑇 − physical time step; ∆𝑡 − pseudotransient time step for the dynamic relaxation method

𝐹𝑢 =  𝛤𝑁
𝑇𝜎𝑛𝑑𝛤; 𝐹𝑤 =  

𝛤
𝑁𝑇𝑃𝑓𝑛𝑑𝛤;



Integration of plastic flow equations
1) Compute predicted stresses 𝜎𝑛+1 = 𝜎 𝛻𝑢𝑛+1, 𝛻𝑤𝑛+1 и 𝑝𝑓𝑛+1 = 𝑝 𝛻𝑢𝑛+1, 𝛻𝑤𝑛+1

2) Check plastic criterion 𝐹𝑛+1=F(𝜎𝑛+1, 𝑝𝑓𝑛+1) > 0

3) If false, go to the next time step.

4) If true, return stresses and fluid pressure back to the yield surface:

∆𝜆 =
𝐹𝑛+1

𝜇 + 9𝐵𝐶(𝐾 +𝑀(1 − 𝑏)2)

𝑝𝑓𝑛+1 = 𝑝𝑓𝑛+1 + 3CM ∆𝜆 (1 − 𝑏)

𝑃𝑛+1 = 𝜎𝑛+1:I + 9𝐶 ∆λ(𝐾 - 𝑏𝑀(1 − 𝑏))

S =  A + B(𝑃𝑛+1 +3𝑝𝑓𝑛+1)

𝜎𝑖𝑖𝑛+1 = 
(𝜎𝑖𝑖𝑛+1 + 3C ∆𝜆(K − bM(1−b)))S + 𝜇 ∆𝜆

𝑃𝑛+1
3

𝑆+ 𝜇 ∆𝜆

𝜎𝑖𝑗𝑛+1 = 
𝜎𝑖𝑗𝑛+1𝑆

𝑆+ 𝜇 ∆𝜆
for i ≠ 𝑗

And update plastic strains according to the plastic flow rule:

𝜀𝑝𝑖𝑖𝑛+1 = 𝜀𝑝𝑖𝑖𝑛+1 + ∆𝜆 (
𝜎𝑖𝑖𝑛+1 −

𝑃𝑛+1
3

2𝑆
- C)

𝜀𝑝𝑖𝑗𝑛+1 = 𝜀𝑝𝑖𝑗𝑛+1 + ∆𝜆
𝜎𝑖𝑗𝑛+1

2𝑆
for i ≠ 𝑗

𝜁𝑝𝑛+1 = 𝜁𝑝𝑛+1 - 3C ∆𝜆
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Massively-parallel 
implementation on GPU

• A set of CUDA kernels: SEM assembly stage, time integration 
(Newmark scheme), boundary conditions

• SEM-mesh is essentially mapped onto CUDA Grid: each spectral 
element is processed by a separate CUDA Block, and 
correspondingly local nodes of SEM element are processed by 
CUDA Threads inside a block => this allows efficient usage of 
CUDA Shared memory for SEM element data caching while 
computing space partial derivatives

• CUDA Block size is automatically defined by SEM approximation 
order, a number of CUDA Blocks is equal to the number of SEM 
elements

• Use of atomic operations at the SEM assembly stage (assembly of 
global force vector and global mass matrix) keeps global GPU 
memory read-write operations secure



Use of graphs in CUDA 10

Application of dynamic relaxation method requires 
multiple (several thousands pseudotransient iterations) 
kernel calls using constant input data (since the static 
solution is sought).

In order to optimize kernel calls’ overhead CUDA graphs 
are efficiently used –which allow asynchronous kernel 
calls and overlap them with global GPU memory 
operations (memcpy/memset).



Hybrid HPC platform
(located in the laboratory of computation hydrogeomechanics of 
the chair of computational mechanics of 
Lomonosov Moscow State University)

HPE Apollo 6500 Gen10:
• 8xTesla V100 NVLink 2.0

• InterGPU memory bandwindth using nvLink -
300 Gb/sec

• NVIDIA Grid for remote (RDP) CUDA-
computing and 3D rendering

NVIDIA Tesla V100:
• FP64 (double precision) - 7,8 Teraflops

• GPU stack memory HBM2 - 32 Gb

• 80 multiprocessors, 2560 cores FP64

• Global GPU memory bandwidth- 900 Gb/sec

• Support for CUDA 10 and CUDA 11



Performance analysis

Unstructured mesh consisting of 208 
curvilinear quadrangular elements

SEM mesh of 15th order consisting of
208x16x16=53248 nodes

10000 pseudotransient time iterations takes about 2 sec.

Numerical error reduces exponentially 
with respect to SEM order (spectral 
convergence), while computing time 
grows linearly due to massively parallel 
architecture of GPU and memory caching 
inside a block (spectral element).
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Model problem of a drawdown in the borehole
(H. Wang and M. Sharma, 2016, SPE-181566-MS)

• Model size: 8x8 m

• Borehole radius: 20 sm

• Material parameters:
• Bulk modulus of solid grains Ks - 2.04 GPa

• Shear modulus of solid grains μs - 1.59 GPa

• Bulk modulus of fluid Kf - 1.0 GPa

• Initial porosity 𝜙 - 0.25

• Fluid viscosity 𝜂 - 0.005 Pa*sec

• Initial permeability k - 1.0e-12 𝑚2

• Cohesion c – 2 MPa

• Internal friction angle φ – 20 degrees

• Dilatancy angle ψ – 10 degrees

• Boundary condition: pressure in the borehole
reduces at the rate 0.6 MPa/hour

Initial and boundary stresses:
• 𝜎𝑥𝑥 = -28 MPa
• 𝜎𝑦𝑦 = -32 MPa

• 𝜎𝑧𝑧 = -35 MPa
• 𝜎𝑥𝑦 = 0
Initial and external pore pressure and initial
Pressure in the borehole 𝑃𝑓 = 25 MPa



Stresses in different time moments

Initial state Load 30% Load 100%

𝜎𝑥𝑥 𝜎𝑥𝑥 𝜎𝑥𝑥

𝜎𝑦𝑦 𝜎𝑦𝑦 𝜎𝑦𝑦



Porosity change during loading process

0% 25%

50%100%



Development of plastic shear bands
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Conclusion

• An algorithm for numerical modeling of poroelastoplastic coupled 
processes in a fluid-saturated porous medium based on the 
isoparametric spectral element method is developed

• The algorithm is implemented on a massively parallel GPU 
architecture using CUDA technology

• For the model problem of an artificial drawdown in a borehole, the 
process of formation and development of plastic shear bands 
localization is analyzed.
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