Linking submesoscale fronts and air-sea heat fluxes in the Southern Ocean: Results from the first Saildrone circumnavigation of Antarctica

Hanna S. Rosenthal, Louise C. Biddle, Sebastiaan Swart, Sarah T. Gille, and Matthew R. Mazloff

UNIVERSITY OF GOTHENBURG

66 % of the sensible and 74% of the latent heat flux changes detected over (uncompensated temperature) fronts were due to fronts smaller than 1 km in length scale.

What was the mission?

Over 630 000 measurements from 3 Saildrones Circumnavigating Antarctica in 2019.

1 min resolution was measured.

5min rolling mean resolution was used in this study to minimize the influence of rapid motion in highly dynamic Southern Ocean conditions.

How were the Saildrones equipped?

Hanna.Rosenthal@gu.se

What horizontal density gradients were measured?

99th percentile: 0.43 kg m⁻³ km⁻¹ Minimum : 9x 10⁻⁹ kg m⁻³ km⁻¹ Maximum: 4.4 kg m⁻³ km⁻¹

How did we detect the SST driven fronts?

START is where:

Density gradient > 0.01 kg m⁻³ km $^{-1}$

STOP is where:

Density gradient < Density gradient @ Start

Front is while:

Atmospheric changes have little impact (i.e. Wind speed changes no more than 0.4 m/s and air temperature changes no more than 0.04 °C)

At least 5 measurement that are at least 15 m apart

SST is driver in horizontal density gradient (i.e. R <1)

What SST fronts did we detect ?

Histogram of front width from detected fronts

Fronts with a length scale from 62m to 9km were detected.

Relative Heat fluxes:

Q_{change} over front divided by front length

< Hanna.Rosenthal@gu.se

How do the heat flux changes over individual fronts look like ?

UNIVERSITY OF GOTHENBURG

] Hanna.Rosenthal@gu.se

@RosenthalHanna / @PolarGliders

Why are small fronts important?

66 % of the sensible and 74% of the latent heat flux changes detected over (uncompensated temperature) fronts were due to fronts smaller than 1 km in length scale.

Hanna.Rosenthal@gu.se

