Are carbonates from the India-Asia collision remagnetized?

- There are many clear evidences of remagnetizations in the region, especially when this remagnetization is carried by Pyrrhotite.
- In the presentation we review the evidences for remagnetization in the Tethyan Himalaya.
- We however challenge the interpretation that secondary magnetite are derived from alteration of pyrite.
- Results from a carbonate sequence from the Qiantang indicate that the alteration of pyrite mainly produces iron hydroxides.

Pierrick Roperch¹ and Guillaume Dupont-Nivet^{1,2} 1Géosciences Rennes, Université Rennes1; 2Potsdam University

Pyrrhotite : plenty of evidences in previous publications Pyrrhotite remagnetizations in the Himalaya: a review

E. APPEL¹*, C. CROUZET² & E. SCHILL³

¹Fachbereich Geowissenschaften, Universität Tübingen, Sigwartstrasse 10, 72076 Tübingen, Germany

²Institut des Sciences de la Terre, Université de Savoie, CNRS, 73376 Le Bourget du Lac, France

³Institut de Géologie et d'Hydrogéologie, Université de Neuchâtel, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland

*Corresponding author (e-mail: erwin.appel@uni-tuebingen.de)

More evidences in recent publications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jseaes

Possible cause of the remagnetization: early Miocene adakitic volcanism

h RM in permission of the second seco

Medium temperature component

But there is a secondary component with intermediate unblocking temperatures with south declination and negative inclinations No rotation in the MTC component at Sangdanlin

JGR Solid Earth

RESEARCH ARTICLE

10.1029/2019JB017927

Key Points:

- The Saga area of the northern Tethyan Himalaya at ~59 Ma lay at $6.3^{\circ} \pm 4.3^{\circ} S$
- Neither wide Ocean extension nor >1,000 km crustal shortening occurred between Indian craton and Tethyan Himalaya after the latest Jurassic
- The India-Asia collision occurred at 47.1±4.5 Ma

Sunnarting Information.

Precollisional Latitude of the Northern Tethyan Himalaya From the Paleocene Redbeds and **Its Implication for Greater India and the India-Asia collision**

¹State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China, ²School of Earth Sciences and Resources, China University of Geosciences, Beijing, China, ³State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, ⁴College of Resources, Environment and Tourism, Capital Normal University, Beijing, China

Conclusion : This reliable paleomagnetic dataset passes positive fold tests and supports that the northern Tethyan Himalaya was located at $6.3 \pm 4.3^{\circ}$ S during 60–58 Ma.

Tianshui Yang^{1,2} D, Jingjie Jin^{1,2}, Weiwei Bian^{1,2}, Yiming Ma^{2,3} D, Feng Gao^{1,2}, Wenxiao Peng^{1,2}, Jikai Ding^{1,2}, Suo Wang^{1,2}, Shihong Zhang^{1,2} D, Huaichun Wu¹, Haiyan Li¹, and Zhenyu Yang⁴

Paleolatitude 13.7±2.5°N at ~61Ma

6.3±4.3°S at 60-58Ma

Remagnetization in Paleocene carbonates Same component of magnetization in Paleocene carbonates with south declination and negative low inclinations

Albian

But there is also a secondary component with unblocking temperatures in the range 250-450°C (Not discussed in the Meng et al. paper)

TH IS

Down

555

Is the ChRM in Maastrichtian samples a primary magnetization?

The secondary component in Albian samples (red circles) is not different from the ChRM in Mastrichtian samples (blue circles).

Geochemistry, Geophysics, Geosystems

RESEARCH ARTICLE

10.1002/2014GC005624

Key Points:

- Low Cretaceous volcaniclastic sandstones retain a primary remanence
- Jurassic limestones were chemically remagnetized
- Tibetan Himalaya was part of India plate in Early Cretaceous

Supporting Information:

Supporting Information

Correspondence to:

W. Huang, W.Huang@uu.nl

Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks

Wentao Huang^{1,2}, Douwe J. J. van Hinsbergen², Mark J. Dekkers², Eduardo Garzanti³, Guillaume Dupont-Nivet^{1,2,4,5}, Peter C. Lippert^{6,7}, Xiaochun Li⁸, Marco Maffione², Cor G. Langereis², Xiumian Hu⁹, Zhaojie Guo¹, and Paul Kapp⁶

¹Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, China, ²Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, ³Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy, ⁴Géosciences Rennes, UMR 6118, Université de Rennes 1, Rennes, France, ⁵Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany, ⁶Department of Geosciences, University of Arizona, Tucson, Arizona, USA, ⁷Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA, ⁸Department of Earth Sciences, University of Hong Kong, Hong Kong, China, ⁹State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China

athonian Bathonian-Callovia	n Callovian	Oxfordian-Kimmerid	gian Tithonian Aptian
	ее ^в	GPS::28.4	7889°N; 87:03528°E
up Laptal Laptal Dan	gar. S	Wölong Forn	nation
	JD52		
		TR80	TR164 TR241TR264
5°∠87°	<u>∕</u> 10°∠87°	<u>12</u> °∠73°	<u>/15°</u> Z67° <u>5</u> °Z66°
imestone	tone Si	Itstone	
nite Quartzaren	ite <u>v, v, v, v</u>	olcaniclastic sandstone	Blackshale

RESEARCH ARTICLE

Special Section:

Crust

Key Points:

- Zongpu carbonate rocks in the Gamba area of southern Tibet are chemically
- Remagnetization was induced by authigenic magnetite formed during oxidation of early diagenetic pyrite
- Greater India of ~3500-3800 km in width for the Early Cretaceous

same fold limb. **Could the ChRM be secondary?**

Fold tests are often ambiguous with most of the samples on the

.00

Huang et al. interpret the SEM/EDS data as evidence for the transformation of pyrite to magnetite. But the amount of magnetite should be huge and should result in strong magnetic properties and this is not what it is observed

>

•

0.0

Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE

10.1002/2017JB013987

Key Points:

- Jurassic to Paleogene Himalayan carbonates are pervasively remagnetized by oxidation of diagenetic iron sulfide to fine-grained magnetite
- Lower Cretaceous volcaniclastic rocks retain a primary remanence
- Thorough rock magnetic and petrographic information are more reliable criteria for diagnosing remagnetization in carbonates than filed tests

Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations

Wentao Huang^{1,2,3} (D), Peter C. Lippert³ (D), Yang Zhang¹ (D), Michael J. Jackson⁴ (D), Mark J. Dekkers⁵ (D), Juan Li⁶, Xiumian Hu⁶, Bo Zhang¹, Zhaojie Guo¹ (D), and Douwe J. J. van Hinsbergen⁵ (D)

¹Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, China, ²Department of Geosciences, University of Arizona, Tucson, Arizona, USA, ³Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA, ⁴Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA, ⁵Department of Earth Sciences, University, Utrecht, Netherlands, ⁶School of Earth Sciences and Engineering, Nanjing University, Nanjing, China

Same interpretation than in the previous paper Same problems with SEM/EDS data

Tingri (Zongpu Fm)- Gamba (Jiubao Fm)

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

Challenges in isolating primary remanent magnetization from Tethyan carbonate rocks on the Tibetan Plateau: Insight from remagnetized Upper Triassic limestones in the eastern Qiangtang block

Wentao Huang^{a,*}, Michael J. Jackson^b, Mark J. Dekkers^c, Yang Zhang^d, Bo Zhang^d, Zhaojie Guo^d, Guillaume Dupont-Nivet^{d,e,f}

^e University of Rennes 1, CNRS INSU UMR 6118, Geosciences, Rennes, France

Same story on Triassic carbonates from the eastern Qiangtang. Huang et al. use SEM/EDS data to interpret the paleomagnetic data.

Thermal demagnetizations just show the removal of a recent-field

^a Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA

^b Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota, MN, USA

^c Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands

^d Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, China

^f Institute for Earth and Environmental Science, Universität Potsdam, Potsdam, Germany

The in situ high temperature component has steep inclination and is clearly pretectonic. The tilt corrected inclination is close to the expected one (square).

k) from Huang et al.

Left: observation on SEM (this study) **Above: optical observation in** reflected light (this study) The dark blue-grey colour corresponds to pyrite weathering products

Comparison of images in reflected light microscope and SEM images The dark blue grey is just limonite and various iron hydroxides

EDS data will give Fe and O but it is not magnetite

Huang et al's interpretation of SEM data is questionned by our observations

Conclusions:

We found no evidence for oxidation of early diagenetic pyrite to magnetite in Triassic carbonates from the Qiangtang. Interpretation of SEM data should not be done without microscope observation in reflected light.

But that does not rule out the presence of a secondary magnetization in the Tethyan Himalaya carbonates.

Is the remagnetization event in the early Miocene associated with pyrrhotite widespread and affecting the carbonates with magnetite ?

Is there still any hope to determine the size of Greater India from Pmag data ?

Recommendation: All the raw demagnetization data should be published in the MAGIC database for a reassessment of all the data