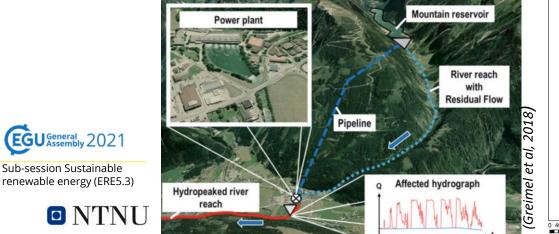
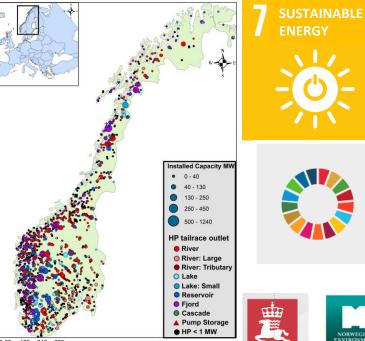
Emerging mitigation measures and strategies are needed for riverine ecology to ensure sustainable hydropeaking production in Norway

J. H. Halleraker^{1,2}, M. S. R. Kenawi¹, J. H. L'Abée - Lund³,


Anders G. Finstad⁴, T. H. Bakken¹ & K. Alfredsen¹


¹ Norwegian University of Science and Technology (**NTNU**), Department of Civil and Environmental Engineering

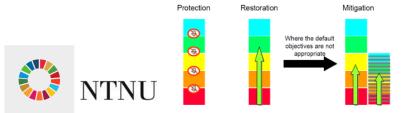
² Norwegian Environment Agency (NEA)

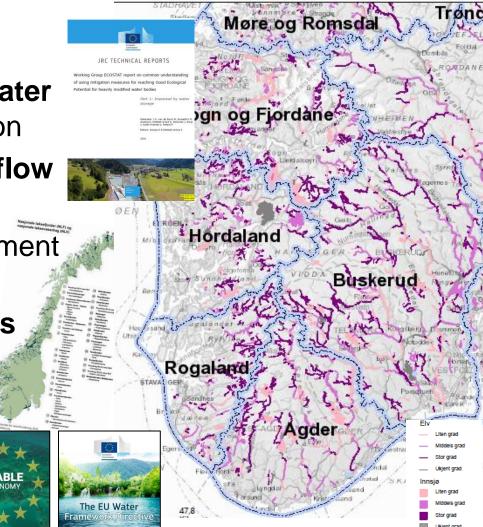
³ Norwegian Water Resources and Energy Directorate (NVE)

4) Centre for Biodiversity Dynamics (CBD), Department of Natural History (NTNU)

1. SusFlow

Flow alteration and ecology


EcoPeak - subdaily

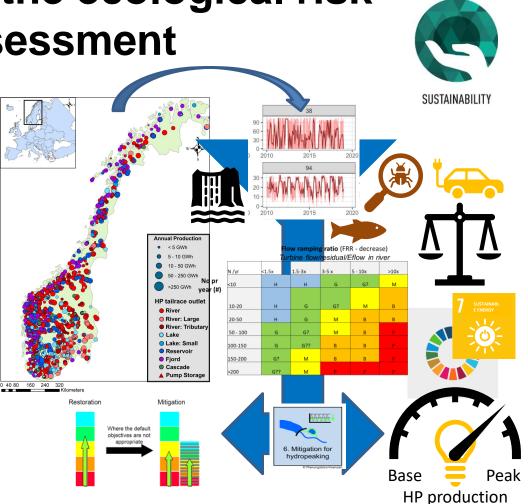

flow fluctuations

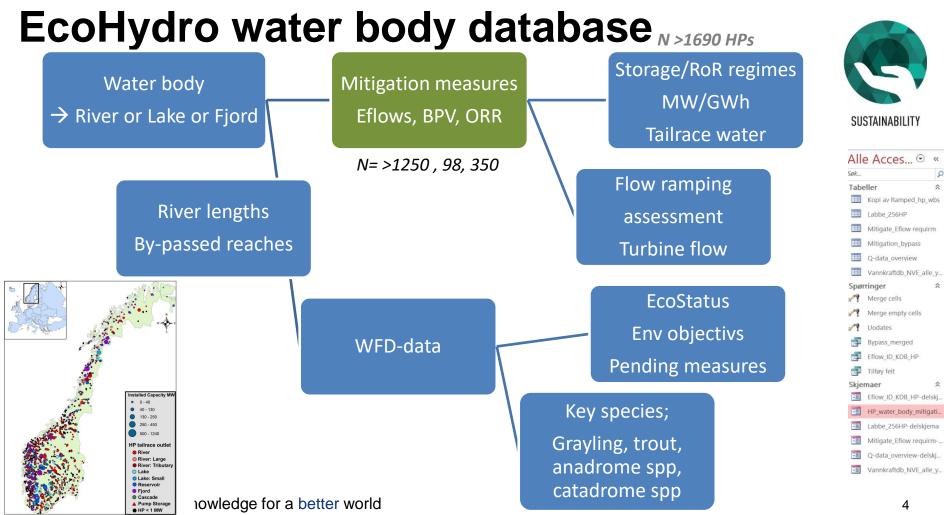
Objectives

The emphasise on **downstream water** bodies from hydro turbines operation

- i) ecological risk assessment of flow ramping
- ii) relate key findings to management objectives
- ii) evaluate mitigation measures
- iv) recommend evidence based management strategies

Key steps in the ecological risk assessment



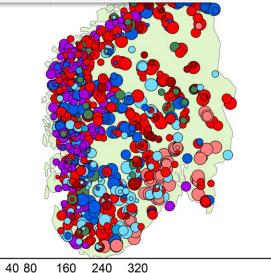

- Hydro Power (HP) CHARACTERISTICS 1.
 - Type and locations of outlets
 - Storage scheme vs RoR HP
 - Max turbine Q

3.

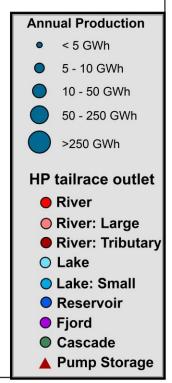
- **VULNERABILITY:** Ecological sensitivity/ risks 2.
 - Abiotic water body characteristics
 - **Biological conditions**
 - **PRESSURE IMPACTS:** Mode of operation vs efficiency of mitigations
 - Analysis of flow ramping intensity Q-indicators
 - Multiple pressure modelling
 - Functionality and pending mitigation measures
- 4. MITIGATION: Monitoring and scoring of ecological restoration vs energy potential
- Identification of pending relevant measures as basis for sustainability evaluation

	All sizes		>10 MW		1.1-10 MW		<1 MW	
HP tailrace outlets	n	%	n	%	n	%	n	%
In rivers (> 1 km)	785	51 %	157	47 %	339	50 %	289	56 %
"small lakes"	17	1%	6	2 %	9	1%	2	0%
In lakes/reservoirs	370	24 %	113	34 %	159	23 %	98	19 %
In fjords	359	23 %	56	17 %	174	26 %	129	25 %
Total no	1531		332		681		518	

0 40 80 160 240 320


Norwegian HP outlets

		All (excl P, PK/cascade/unclassified)						
	All sizes		>10 MW		1.1-10 MW		<1 MW	
HP tailrace outlet	Ν	%	Κ	%	KS	%	Μ	%
In rivers (> 1 km)	785	51 %	157	47 %	339	50 %	289	56 %
"small lakes"	17	1%	6	2 %	9	1%	2	0 %
In lakes/reservoirs	370	24 %	113	34 %	159	23 %	98	19 %
In fjords	359	23 %	56	17 %	174	26 %	129	25 %
Total no	1531		332		681		518	

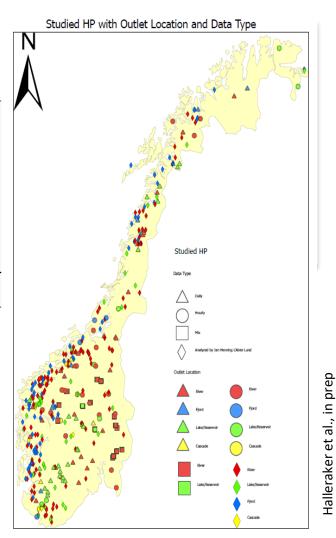

Take home messages;

- 1. Ecological severe **flow ramping is frequent** in many Norwegian rivers
 - An issue for all? HP with outlet in rivers?
- 2. Many (**51** %) of our largest HP facilities have outlet into **fjords** or **reservoirs**
 - peaking without ecological damage without mitigation is likely

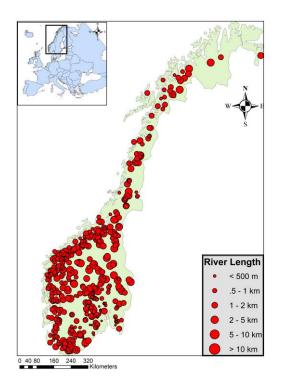
NTNU Knowledge for a better we

Kilometers

Ramping restrictions in Norwegian hydropower licenses

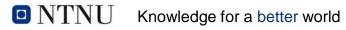

	<u>All sizes</u>		>10 MW	1.1-10 MW	
Operational Ramping Restrictions (ORR)	n	%	n %	n %	
In license	>348	21 %	32 9%	277 39 %	
Without any restrictions	499	30 %	185 54 %	244 34 %	
Total HP (excluding P and PK)	1652		345	716	

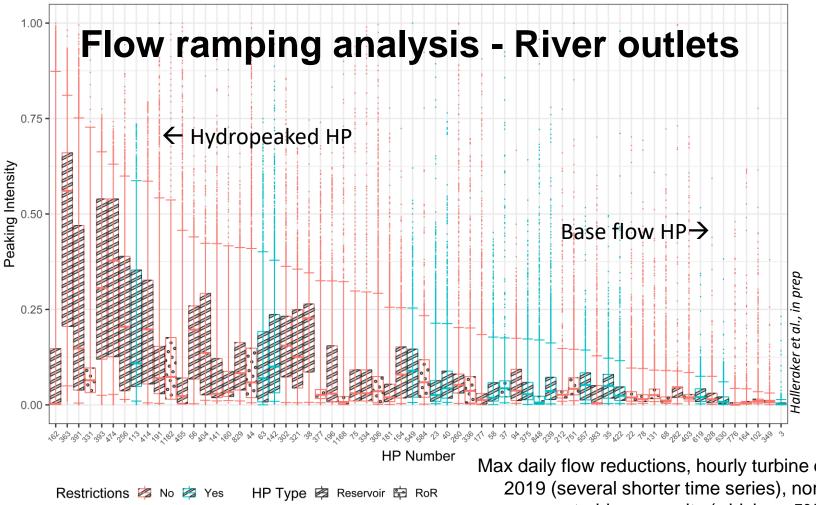
- 1. Most ORR have vague descriptions e.g. as slow flow-change as possible, and not related to e.g. downramping speed
- 2. Few large HP have ORR in license requirement An issue in revision of terms presently
- 3. Several large scale HP license have more detailed ORR description in National **salmon rivers** than others


e.g. HP 3 – Alta – no more than 2 m^3 /s daily change (16-33 m^3 /s)

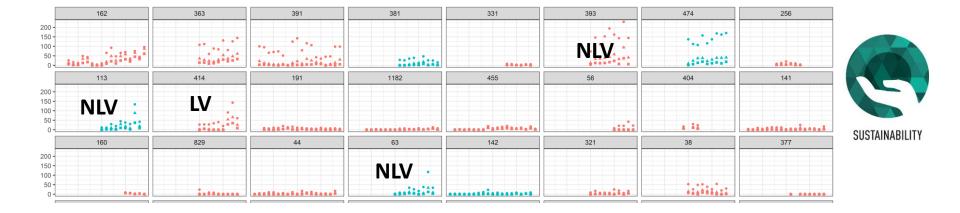
NTNU

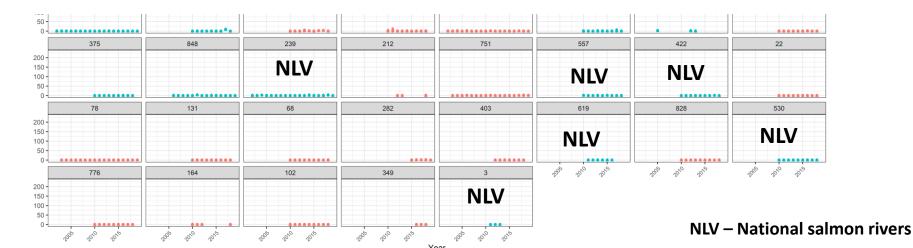
Knowledge for a better world


Key results from our assessment

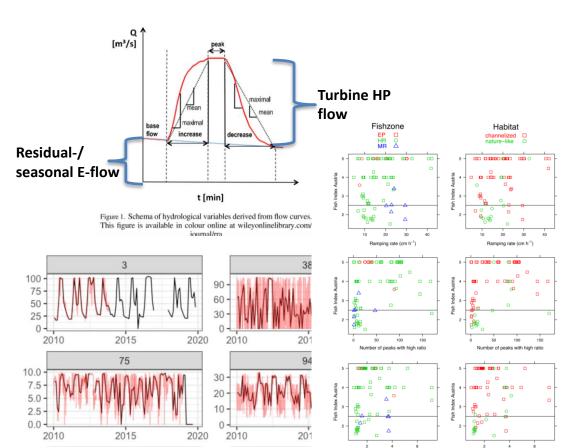


About 51 % of the HPs (ca **80TWh**) have tailrace into shorter rivers (<1 km) or directly into fjords or lake/reservoirs.


- Many of the largest HPs are in this category (e.g 50 HP> 500 MW).
- Close to 800 HP might have downstream impacts on rivers
 - > 0.5 km; about 49 % of all HP, in total of ca 56 TWh)
 - Probably > 3 000 km of regulated rivers in Norway therefor might need more ecosystem-based mode of HP operation (flow modification restoration or additional mitigation measures).



SUSTAINABILITY


Max daily flow reductions, hourly turbine discharge 2010-2019 (several shorter time series), normalised by max turbine capasity (whiskers 5% ile and 95% ile)

Restrictions • No • Yes Annual No. Peaks > • 75% • 90% • 95%

Flow ramping rules and ecological impacts are well documented

Review

Life Stage-Specific Hydropeaking Flow Rules

Daniel S. Hayes 1,2,*0, Miguel Moreira 3, Isabel Boavida 30, Melanie Haslauer 10, Günther Unfer¹, Bernhard Zeiringer¹, Franz Greimel¹, Stefan Auer¹, Teresa Ferreira² and Stefan Schmutz

Article

The Impact of Hydropeaking on Juvenile Brown Trout (Salmo trutta) in a Norwegian Regulated River

Svein Jakob Saltveit 1,*, Åge Brabrand 1, Ana Juárez 2, Morten Stickler 3,4 and Bjørn Otto Dønnum 5

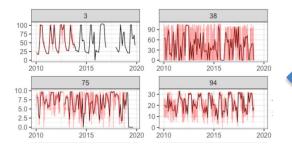
¹ Freshwater Ecology and Inland Fisheries Laboratory, Natural History Museum, University of Oslo,

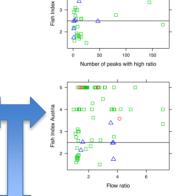
RIVER RESEARCH AND APPLICATIONS

River Res. Applic. 31: 919-930 (2015

Published online 7 August 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.2795

RESPONSE OF FISH COMMUNITIES TO HYDROLOGICAL AND MORPHOLOGICAL ALTERATIONS IN HYDROPEAKING RIVERS OF AUSTRIA

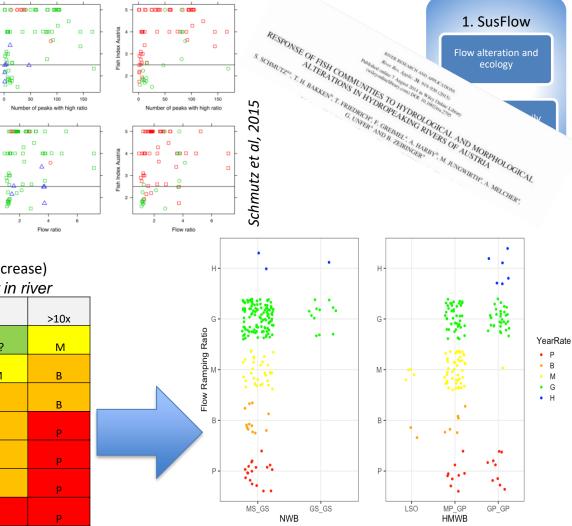

S. SCHMUTZ^{a*}, T. H. BAKKEN^b, T. FRIEDRICH^a, F. GREIMEL^a, A. HARBY^b, M. JUNGWIRTH^a, A. MELCHER^a, G. UNFER^a AND B. ZEIRINGER^a

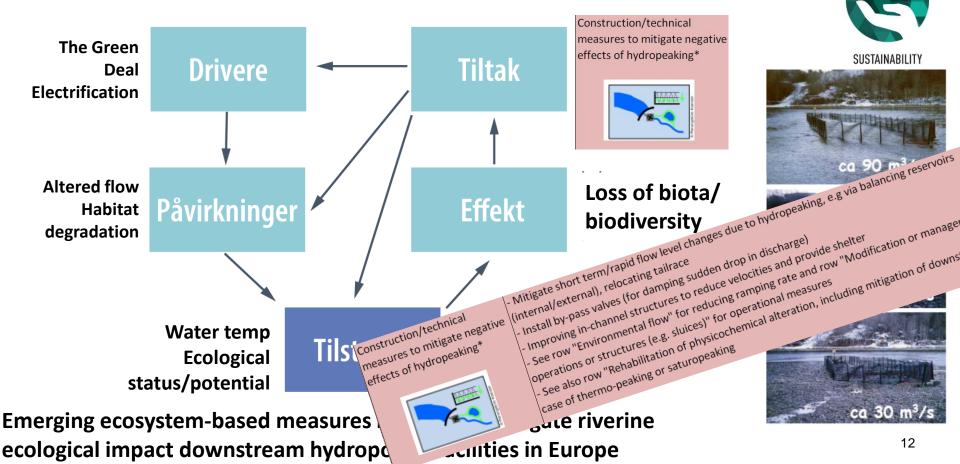


0

MDPI

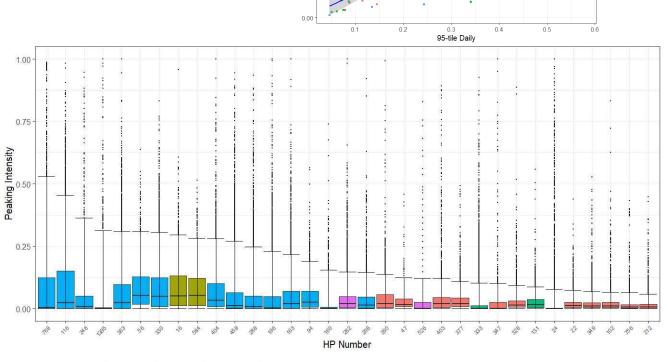
Ecological impact modelling for river WBs




Δ

Flow ramping ratio (FRR - decrease) Turbine flow/residual/Eflow in river

	N /yr	<1.5x	1.5-3x	3-5 x	5 - 10x	>10x
No pr	<10	Н	Н	G	G?	М
year (#)	10-20	н	G	G?	м	В
	20-50	н	G	м	В	В
	50 - 100	G	G?	м	В	Р
	100-150	G	G??	В	В	Р
	150-200	G?	м	В	В	Р
	>200	G??	М	Р	Р	Р



Ecological mitigation (DIPSIR)

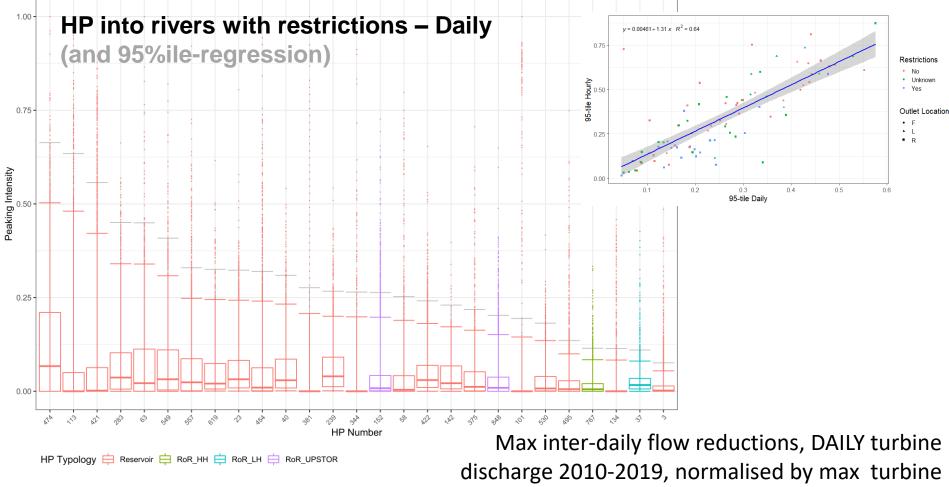
Daily data (only) River outlets_no restrictions → indicative flow ramping signals and identify need for ecological mitigation

- 768 Lakshola R3 (A)
- 116 Grytten R5 (A)
- 246 Lio R3 (Storaure)*
- 1395 Mælfoss -
- 363 Savalen R4 (Grayling)
- 56 Dale II (A) *
- 330 Rana R3 (A)
- 16 Bardufoss R3
- 584 Hellandsfoss R3
- 404 Straumsmo R5 *
- 458 Tunnsjødal R5
- 196 Kalvedalen R4
- 94 Skagen R4
- 282 Mykstufoss R5
- 298 Nedre Røssåga R4 (A)
- (*) Stranding reported

 $v = 0.00461 + 1.31 \times B^2 = 0.64$

No • Unknown

Yes
Outlet Location
 F


▲ L ■ R

0.75

95-tile Hourly

NTNU Knowledge for

HP Typology 🛱 ROR_LH 🛱 RoR_MH 🛱 ROR_MH 🛱 Storage_HH 🛱 Storage_MH

'NU Knowledge for a better world

🖸 N'I

capasity (whishkers 95 %ile), (and 95%ile-regression)

Key findings for sustainable management

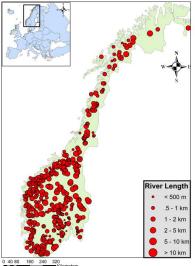
- Ecological severe flow ramping is frequent in many Norwegian rivers
- Many HP operating in National salmon rivers seems to practise gentle flow ramping
- Ecological severe flow ramping, seems to be partly overlooked, and not sufficiently mitigated in many Norwegian rivers
- The screening criteria for EUs taxonomy of sustainable hydropower highlights mitigation of hydropeaking

measures to ensure minimum ecological flow (including mitigation of rapid, short-term variations in flow or hydropeaking operations) and sediment flow;

measures to protect or enhance habitats.

Knowledge for a better world

 Norway as a "green battery" need then to step up ecological mitigation and monitoring to ensure sustainability



- ✓ Pri 1: Peaking mainly <u>from HP without</u> river impacts
- Pri 2: avoid rapid/frequent flow ramping in the most sensitive ecological emergence windows

Flow ramping ratio (FRR

daaraacal

		- decrease)						
	N /yr	<1.5x	1.5-3x	3-5 x	5 - 10x	>10x		
No pr	<10	н	Н	G	G	М		
year (#)	10-20	н	G	G	М	В		
(#)	20-50	Н	G	М	В	В		
	50 - 100	G	G	м	В	Р		
	100-150	G	G	В	В	Р		
	150-200	G	М	В	В	Р		
	>200	G	М	Р	Р	Р		

Questions?

Thanks for your interest in this project 🙂

