

Display Materials

Emergence of multi-sectoral impacts of the global warming during the 21st century.

Focus on Western Africa

Audrey Brouillet^{1*} and Benjamin Sultan¹

*email: audrey.brouillet@ird.fr

¹ESPACE-DEV (Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon). Maison de la Télédétection, Montpellier, FRANCE

Previous studies: multi-sector (cumulated) impacts

DOI: 10.1088/1748-9326/aabf45

Byers et al. (2018) use a cumulative approach on quantified impacts (12-14 impacts illustrating 3 main sectors) using **ISIMIP Fast Track**.

*email: audrey.brouillet@ird.fr

Previous studies: multi-sector (cumulated) impacts

DOI: 10.1088/1748-9326/aabf45

Byers et al. (2018) use a cumulative approach on quantified impacts (12-14 impacts illustrating 3 main sectors) using **ISIMIP Fast Track**.

 \rightarrow A *multi-sectoral risk* index is developed to assess the risk of a climate-change impacts overlapping. They further weight these risks with future population scenarios.

→ Global exposure to *multi-sector risks* approximately doubles between +1.5°C and +2°C warmings, and doubles again with +3°C.

→ The risks are multiplied by 6 from best to worst cases (i.e. depending on the RCP/SSP scenarios' combination). 85%-95% of global exposure falls to Asian and African regions. Previous studies: Time of Emergence

In *Gaetani et al. (2020)*, the TOE of precipitation change in West Africa is assessed for the first time using a set of 29 CMIP5 models.

DOI: 10.1038/s41598-020-63782-2

Previous studies: Time of Emergence

In *Gaetani et al. (2020)*, the TOE of precipitation change in West Africa is assessed for the first time using a set of 29 CMIP5 models.

 \rightarrow In West Sahel, climate conditions characterized by reduced occurrence of wet days are likely to emerge before 2036, leading to the possible emergence of a dryer climate in 2028–2052.

 \rightarrow In East Sahel, a wetter precipitation regime characterized by increased occurrence of very wet days is likely to emerge before 2054.

 \rightarrow Although uncertainty in climate model projections still limits the robust determination of TOE at a local scale, this study provides reliable time constraints to the expected climate shift in West Africa at the sub-regional scale.

DOI: 10.1038/s41598-020-63782-2

When will emerge combined and multi-sectoral impacts of the global warming during the 21st century ?

(1) <u>Data</u>

 \rightarrow ISIMIP (Intersectoral Impact Models Intercomparison Project) data: Cross-sectoral simulations of different impacts of climate change. We use the <u>ISIMIP2b</u> protocol (*i.e. historical + future impact projections using 4 CMIP5 climate model inputs*). Different impact models are also compared when providing the impact (e.g. orchidee, visit, lpjml, clm45);

 \rightarrow 10 CMIP5 climate models for "direct" climate variables/impacts;

→ Future scenario RCP8.5 displayed (but RCP2.6 also analysed);

(1) <u>Data</u>

 \rightarrow ISIMIP (Intersectoral Impact Models Intercomparison Project) data: Cross-sectoral simulations of different impacts of climate change. We use the <u>ISIMIP2b</u> protocol (*i.e. historical + future impact projections using 4 CMIP5 climate model inputs*). Different impact models are also compared when providing the impact (e.g. orchidee, visit, lpjml, clm45);

 \rightarrow 10 CMIP5 climate models for "direct" climate variables/impacts;

→ Future scenario RCP8.5 displayed (but RCP2.6 also analysed);

(2) Impact indicators

HEATWAVES :

daily maximum temperature during AMJ (not displayed) daily maximum temperature during JAS

HEALTH :

Annual days of severe heat stress (Thermal Heat Index) annual Length Transmission Season of malaria (not displayed)

FLOODS :

annual wet extreme (98th percentile) precipitation annual extreme (98th percentile) surface + subsurface runoff very wet days (days with cumulated precipitations > 20mm)

DROUGHTS:

annual dry extreme (2th percentile) precipitation dry days (days with cumulated precipitations < 3mm)

AGRICULTURE :

annual yields of soy under full irrigation (not displayed) annual yields of maize under full irrigation annual Leaf Area Index (gives information about breeding capability)

(3) <u>Time of Emergence</u>

 \rightarrow To detect the year when there is a significant statistical difference between a given window compared to a fixed reference known as the Time of Emergence (ToE), we use a **Kolmogorov-Smirnoff** statistical test (KS-test)

 \rightarrow The KS-test compares two cumulative distribution functions and gives the maximum difference/distance (D) between these two continous distributions, <u>independently from the shape of the distributions</u> (*King et al., 2015; Gaetani et al., 2020*)

(3) Time of Emergence

 \rightarrow To detect the year when there is a significant statistical difference between a given window compared to a fixed reference known as the Time of Emergence (ToE), we use a **Kolmogorov-Smirnoff** statistical test (KS-test)

 \rightarrow The KS-test compares two cumulative distribution functions and gives the maximum difference/distance (D) between these two continous distributions, <u>independently from the shape of the distributions</u> (*King et al., 2015; Gaetani et al., 2020*)

→ Given a certain length of the distribution (N), the distance D is given at a confidence level/p-value (α). According to statistical tables, and for a distribution length of 20<N<30 with a confidence level of 95 % (p-value ≤ 0.05), the critical distance above which the two compared distributions are different is 0.242:

→ In our study, we thus consider an emergence if the calculated D between each 20-year window sliding from 2006 to 2099 and the 1979-2005 reference is equal or above 0.242. We then pick the mid-20-years window of the first emergent 20-year window as the mean <u>Time of Emergence</u>.

Multi-model mean future changes between 1979-2005 and 2074-2100 (RCP8.5)

FLOODS

Annual 98^{pcti} 75 95 precipitations (mm/day)

Annual 98^{pctl} surface + surbsurface runoff (mm/day)

^{ال} ^{الت}Very wet days (daily precip < 20mm)

DROUGHTS

-24 -18 -12 -6 0 6 12 18 24 Dry days (daily precip < 3mm) Annual days of severe Thermal Humidity Index (i.e. THI > 89)

Emergences of the impacts must be considered with their corresponding trend

HEATWAVES

Maximum temperatures during summer (in °C)

Annual mean

Leaf Area Index

SOIL

Annual mean maize yields

Multi-model <u>maximum</u> Time of Emergence (RCP8.5) = latest emergence

FLOODS

Annual 98^{pctl} precipitations

Annual 98^{pctl} surface + surbsurface runoff

Very wet days (daily precip < 20mm)

DROUGHTS

Annual 2^{pctl} precipitations

Dry days (daily precip < 3mm)

2060

2040

2020

2000

2020

2100

2080

HEATWAVES

Maximum temperatures during summer

Annual days of severe Thermal Humidity Index (i.e. THI > 89)

2060

2040

2080

2100

Annual mean Leaf Area Index

Annual mean maize yields

Multi-model <u>minimum</u> Time of Emergence (RCP8.5) = earliest emergence

FLOODS

Annual 98^{pctl} precipitations

Annual 98^{pctl} surface + surbsurface runoff

Very wet days (daily precip < 20mm)

DROUGHTS

Dry days (daily precip < 3mm)

Maximum temperatures

during summer

HEATWAVES

Annual mean Leaf Area Index

Annual mean maize yields

Burnt area

First interpretations

→ According to CMIP5 and ISIMIP2b projections, some locations could experience an emergence of multiple impacts covering different sectors. Some "hotspot" of particularly impacted regions could be highlighted using this approach.

 \rightarrow Example of western West Africa (e.g. Senegal, Guinea): maximum multi-model Time of Emergence values exhibit an emergence of increasing dryest days, increasing daily maximum temperature, increasing burnt areas, decreasing leaf area index and decreasing maise yields **before** the 2040's.

 \rightarrow In these regions, even considering the latest projected emergence by the models, local populations could thus experience a "soon-coming" emergence of new climate regimes for at least 5 impacts.

Current and next steps

10/10