Phase stability and structural properties of Fe₂S and its analog Co₂P at high pressures and temperatures **Results - Fe₂S structure and stability** 3

Claire C. Zurkowski^a, Barbara Lavina^{b,c}, Stella Chariton^c, Sergey Tkachev^c, Vitali B. Prakapenka^c,

Andrew J. Campbell^a

^aUniversity of Chicago, Department of the Geophysical Sciences, 5734 S Ellis g Ave, Chicago, IL 60637, USA ^bX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA ^cCenter for Advanced Radiation Sources, 9700 South Cass Avenue, Building 434A, Argonne, IL 60439, USA

Research Question and Goal

- Earth's core is an Fe-rich alloy with a light element component (likely Fe + S, O, Si, C, H).
- Fe₂S has recently been observed in Ferich compositions at 90 GPa and 306 GPa to high temperatures, making it an important sulfide to examine in relationship to Earth's core chemistry and dynamics.

Multigrain Diffraction Single Crystal Diffraction

Double-sided laser heating

during XRD collection

(Zurkowski et al. submitted, Tateno et al. 2019)

Experiments

BX-90

Boehler-Almax

Co₂P xtls with ruby in Ne

thermal

Figure 2. The structural stability of *Pnma* Fe₂S with pressure and temperature based on this study (up to 200 GPa) and the study by Tateno et al. 2019 (190-306 GPa). The unit-cell parameters measured by powder X-ray diffraction for Fe₂S suggest a Co₂P-like unit cell up to ~140 GPa and high temperature and a Co₂Si-llike unit cell above 150 GPa at high temperatures. Rotational scans were collected on a sample quenched at 90 GPa from 2300 K and grains of Fe₂S were identified in the reciprocal space. The crystal structure of Fe2S was determined to be the C23 (Co₂P-like) structure at these conditions (shown by the $\uparrow \uparrow$) (Zurkowski et al. submitted).

P-Co-P bond angles measured in Co₂P

Figure 3. Measured c/a ratio of Fe₂S at high *P*-*T* showing an increase in c/a ratio with pressure and a discontinuity around 150 GPa, where the c/a ratio in Fe₂S changes from a more Co₂P-like geometry to a more Co_2Si -like geometry. The f indicates a SXD collection where grains of Fe₂S were determined to adopt a C23 structure. The inset plot shows the relative lattice parameters of Fe₂S with pressure and reveals that the *a* axis is highly compressible compared to the *b* and *c* axes.

A closer look at the C23 and C37

Figure 4. The Co₂P and Co₂Si structures are closely related. The Co₂Si structure has a shorter *a* axis and longer *c* axis relative to the Co₂P structure which results in a 4- to 5- fold coordination change on the CoP₄ tetrahedral site going from Co₂P to Co₂Si

Is Co₂P compressing towards a coordination change?

This study explores the stability of Fe₂S to Earth's core pressures and determines its structural evolution

Sample Preparation

Experiments

BX-90

Boehler-Almax

Fe-S foils in KCl

Figure 1. An artist's rendition of Earth's interior showing the layered mantle, outer using Co₂P as a low pressure, singlecore, and inner core structure. The cosmochemically abundant light elements that crystal analog. most likely alloy with iron in the core are labeled.

Powder Diffraction

Experiments

Symmetric

standard cut, carbide

seats

Fe-S foils in KCl

Cell type

Diamonds and

seats

Loadings

2. Methodology

Powder X-ray diffraction + in-situ laser heating

- Monitor phase transitions and the phase and melting relations
- Assess suitable grain growth for SXD techniques

S1 S2

Δ 🔺 aT1

aT2, aT3

△ ▲ aT4, aT5

5.

core

Figure 8. (right) In this study, we

observed, through powder diffraction

Figure 5. (above) Single crystals of Co₂P were examined under compression to 48 GPa. As Co₂P compresses, the P-Co-P bond angles in the tetrahedral and square pyramid building blocks compress anisotropically. Bond angles oriented parallel to the a direction narrow with pressure and bond angles oriented perpendicular to the a direction broaden with pressure. This behavior results in a highly compressible a axis, comparable to what is observed in Fe₂S (Figure 3 inset) and this behavior intensifies above 35 GPa.

Co₂P compresses more than the b and c axes, the Co1 tetrahedral site moves closer to the next nearest P neighbor along the *a* direction. This figure shows the ratio of the distance to the next nearest P site (T5) with the average bond length in the CoP₄ tetrahedron (AVG(T1:T4). Co₂P does not reach a value comparable to Co₂Si to 48 GPa (red dashed line in inset), but the discontinuity observed above 35 GPa, may indicate the onset of attractive forces between the Co1 site and this fifth nearest P neighbor.

Figure 6. (left) As the a axis of

How compression leads to a C23-C37 transition

Figure 7. (right) As Co₂P-like structures, such as Fe₂S, compress, the bond angles distort significantly attributing to a highly compressible a axis (a, b). As atomic sites are forced closer together along the a direction, the Co1-tetrahedral site tends towards a 4- to 5- fold coordination change, which brings the Co₂P structure into coincidence with the Co₂Si structure (c). This compression behavior offers insight into the possible mechanism for the pressure-induced C23-C37 transition reported in Fe₂P (Nakajima et al. 2020) and inferred based on unit-cell geometry for Fe₂S (this study, Zurkowski et al. submitted, Tateno et al. 2019).

2-Theta Angle Integrated high P-T diffraction pattern

SXD rotational scan

Reflection intensity integration and structure factor determination

Structure solution and refinement

Single-crystal X-ray diffraction techniques after temperature quenching

- SXD techniques used for multigrain and single crystal loadings
- Upon temperature quenching at high pressures, rotational scans collected (+/- 60°)
- integrate reflections solve structure refine atomic positions and thermal parameters

6. Acknowledgments

Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of Energy – GeoSciences (DE-FG02–94ER14466). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02–06CH11357. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship to CZ. This work was also supported by the National Science Foundation by grant EAR – 1651017 to AC.

Nakajima, Y., Araki, S., Kinoshita, D., Hirose, K., Tateno, S., Kawaguchi, S.I. and Hirao, N. (2020) New pressure-induced phase transition to Co₂Si-type Fe₂P. American Mineralogist, 105, 1752–1755. Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S., and Hirao, N. (2019) Fe₂S: the most Fe-rich iron sulfide at the Earth's inner core pressures. Geophysical Research Letters, 46, 11,944–11,949. Zurkowski C.C., Lavina B., Chariton S., Greenberg E., Prakapenka V.B. & Campbell A.J. The crystal structure of Fe2S at 90 GPa based on single-crystal X-ray diffraction techniques. Submitted to American Mineralogist.

Claire C. Zurkowski czurkowski@uchicago.edu