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Difficulty: Models are 
imperfect, the regimes 
are domain dependent 
and exhibit a wide 
spread in regime 
frequencies

Aim: Detect a robust non-stationary signal from ensemble data 
using circulation regimes

Solution: Use a regularized clustering method that enforces a level 
of similarity between ensemble members to identify the circulation 
regimes 1

Fig: Regimes for SEAS5 (left) and ERA-Interim (right) for two different domains 
(dashed boxes) indicated by the colours and contours (same interval) respectively.



Linear regression 
shows predictability 
for NAO+ and SB-
with a coefficient of 1, 
no signal for NAO-

Inter-annual variability

Regression of an 
NAO-index yields a 

coefficient of 2

Similar signal strength for observations and model, possibly poor 
representation of NAO- links to signal-to-noise paradox for NAO-index2

Fig: Inter-annual variability of regime occurrence rates for SEAS5 (colour) 
and ERA-Interim with the grey bars showing the noise level for SEAS5.



Display Contents

1. Data (4)
2. Methods (5-7)
• Regularised k-means clustering for regime identification

3. Results
• Effect of regularisation (8-9)
• Sub-seasonal variability (10)
• Inter-annual variability (linking to the signal-to-noise paradox) (11-13)

3



Data

• ECMWF SEAS5 hindcast ensemble
• 51 members
• November 1st start date
• 1981-2016

• DJFM daily 500 hPa geopotential height (Z500)
• Domain A: 20-80°N, 90°W-30°E and Domain B: 30-90°N, 80°W-40°E
• Anomalies with respect to a constant climatology (DJFM average)
• Similar data of ERA-Interim reanalysis for comparison
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Regularised k-means Clustering: The Idea

• At time t a data point falls in-
between two regimes; A and B
• It is slightly closer to A, so 

standard k-means clustering 
assigns it there
• This assignment can be false 

due to noise

• Detect overfitting by 
reassigning it to a more likely 
regime, i.e. B

A                                        B                                        C
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Regularised k-means Clustering: The Maths
Clustering aims to split a data set into 𝑘 clusters 
such that the within-cluster variance is minimised, 
but the between-cluster variance maximised. Let
• Ensemble data 𝑥#,% ∈ ℝ(×*×+ with 𝑇 length of 

time series, 𝑁 number of ensemble members 
and 𝐷 dimension of the data (lat×lon)
• Cluster centres Θ = (𝜃3,… , 𝜃5) ∈ ℝ5×+ with 𝑘

the number of clusters
• Affiliation vector Γ = 𝛾3 𝑡, 𝑛 , … , 𝛾5 𝑡, 𝑛 ∈
ℝ5×(×* giving the assignment of data to the 
clusters

Minimize the averaged clustering functional

ℒ(Θ,Γ) = <
#

<
%

<
5

𝛾5 𝑡, 𝑛 𝑔(𝑥#,%, 𝜃5)

subject to

<
5

𝛾5 𝑡, 𝑛 = 1

and the constraint
∑5∑%@,%A |𝛾5 𝑡, 𝑛3 − 𝛾5 𝑡, 𝑛D | ≤ 𝜙 G 𝐶IJ
summing over all combinations of two 
ensemble members 𝑛3, 𝑛D for every time 𝑡.

The constraint enforces the ensemble members to behave similarly at every timestep without 
making any assumptions on the form of the non stationarity

1 2

3

Identify a “no-regime” 
as data which cannot 
straightforwardly be 
assigned by the 
algorithm: 

𝛾5 𝑡, 𝑛 ∉ {0,1}

4
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Regularised k-means Clustering: Selecting 𝜙
Selection criteria for identifying a 
suitable constraint value:
• Bayesian Information Criterion (BIC)
• Balance complexity and 

accuracy
• Shannon entropy
• Information maximisation

• Domain robustness
• Pattern correlation between 

domain A and B

Select the constraint value which allows to discriminate best between the regimes 
(high entropy) without losing reliability (low BIC): 𝜙 = 0.94 7



Effect of Regularisation: Occurrence Rates

Fig: Occurrence rates for SEAS5 without (standard) and with 
constraint, where the dotted and dash-dotted lines, respectively, 
give represent an equal representation of the data over the 
regimes. The stars indicate ERA-Interim values.

The overall occurrence rates of the 
regimes are more distinct, indicating 
the regularisation helps to better 
discriminate between regimes

The uniformity of the 
ERA-Interim occurrence 
rates is potentially due to 
a lack of discrimination 
between the regimes

1
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Effect of regularisation:
Data reassignment

Fig ↑: Regimes for SEAS5 with (colours) and 
without (contours, same interval) constraint.

← Fig: Composites of data reassigned to a 
different regime by constraint for the cases 
indicated in red in the table.

The constrained 
regimes are no longer 
domain dependent

Tab: Contingency table 
indicating the reassignment 
of data to a different regimes 
by the regularised algorithm.
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Sub-seasonal Variability

A seasonal cycle in the 
occurrence rates is found

Adjusting for the seasonal 
cycle of the mean climatology 
(daily averages fitted with 4th-
order polynomial) nearly all 
variability disappears

1

2
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Inter-annual Variability
Strong inter-annual signals are 
found for NAO+, AR- and SB-, 
whereas the NAO- signal is weaker

The majority of the signal 
coincides with El Niño and 
La Niña years, with NAO+ 
being less and SB- (and 
NAO-) more frequent

Note: most data assigned to 
both NAO+ and SB- would be 
assigned to NAO+ when 
considering only 4 regimes, i.e. 6 
regimes allows to pick up a more 
detailed ENSO response

1
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Inter-annual Variability: Regression Analysis

Fig: Scatter plots of annual regime occurrence with 
the dotted line showing a one-to-one relation.

Tab: Results of a linear regression analysis for regime occurrence rates.

Predictable signals are 
found for NAO+ and SB-
with a slope around 1

Using multiple linear 
regression a strong signal 
for NAO- can be obtained 
from NAO+ and SB-

The Bayes factor indicates 
whether a regression 
hypothesis is more likely (>1) 
than a constant occurrence 
rate, the larger the better

1
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Inter-annual Variability:
Signal-to-Noise

Fig: Regression analysis for an NAO-
index with a slope of 2, with the dotted 
line giving the one-to-one reference line.

Regression analysis can be used to identify the signal strength:
• Assume a true signal 𝑐(𝑡)
• Observational time series 𝑦 𝑡 = 𝑎 𝑐 𝑡 + 𝑒W(𝑡), with 𝑎 the 

signal strength and 𝑒W(𝑡) noise
• Similarly for an ensemble member 𝑥X 𝑡 = 𝑏 𝑐 𝑡 + 𝑒Z[(𝑡)

and the ensemble mean �̅� 𝑡 = 𝑏 𝑐 𝑡 + 𝑒Z̅(𝑡)

• Regression of 𝑦(𝑡) onto �̅�(𝑡) yields a coefficient of ⁄^ _
• ⁄^ _ > 1 indicates the model is better at predicting 

observations than its own ensemble members
• Ratio of Predictable Components = ^

_

ab[
ac

, with 𝜎Z[,W the 

standard deviations of the residuals

Linear regression for an 
NAO-index indicates that 
here the model is better at 
predicting observations than 
itself with a coefficient of 2

No signal-to-noise paradox 
is found for NAO+ and SB-
occurrence rates

A poor model representation 
of NAO- could be linked to 
the signal-to-noise paradox 
for the NAO-index
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