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Aim: Detect a robust non-stationary signal from ensemble data
using circulation regimes SEASS ERA-Interim

Difficulty: Models are
imperfect, the regimes
are domain dependent
and exhibit a wide
spread in regime
frequencies
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Fig: Regimes for SEASS (left) and ERA-Interim (right) for two different domains
(dashed boxes) indicated by the colours and contours (same interval) respectively.

Solution: Use a regularized clustering method that enforces a level
of similarity between ensemble members to identify the circulation
regimes s



Inter-annual variability

Linear regression
shows predictability
for NAO+ and SB-
with a coefficient of 1,
no signal for NAO-

Regression of an
NAO-index yields a
coefficient of 2
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Fig: Inter-annual variability of regime occurrence rates for SEASS5 (colour)
and ERA-Interim with the grey bars showing the noise level for SEASS.

Similar signal strength for observations and model, possibly poor
representation of NAO- links to signal-to-noise paradox for NAO-index
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Data

e ECMWEF SEASS hindcast ensemble

e 51 members
e November 15t start date
e 1981-2016

* DJFM daily 500 hPa geopotential height (Z500)
* Domain A: 20-80°N, 90°W-30°E and Domain B: 30-90°N, 80°W-40°E
* Anomalies with respect to a constant climatology (DJFM average)

 Similar data of ERA-Interim reanalysis for comparison



Regularised k-means Clustering: The Idea

e At time t a data point falls in-

between two regimes; A and B

* It is slightly closer to A, so
standard k-means clustering
assigns it there

* This assignment can be false

due to noise

* Detect overfitting by A
reassigning it to a more likely L
regime, i.e. B




Regularised k-means Clustering: The Maths

Clustering aims to split a data set into k clusters Minimize the averaged clustering functional

such that the within-cluster variance is minimised, A A

but the between-cluster variance maximised. Let LOr) = Z Z Z Vie(t, ) g (Xt ) Or)

* Ensemble data x;,, € RT*N*P with T length of - © " % [identifya no-regime’
" SUbJeCt to as data which cannot

time series, N number of ensemble members straightforwardly be
and D dimension of the data (latxlon) @ @ 2 yi(t,n) =1 assigned by the @
k

* Cluster centres ® = (8, ..., 0;) € R¥*P with k | algorithm:
the number of clusters and the constraint re(tn) € {0,13

» Affiliation vector T = (y1(t,n), ..., vk (t,n)) € Qi 2y ny V(& 1) — vt n2)| < ¢ - Cq
REXTXN giving the assignment of data to the summing over all combinations of two
clusters ensemble members nq, n, for every time t.

The constraint enforces the ensemble members to behave similarly at every timestep without
making any assumptions on the form of the non stationarity



Regularised k-means Clustering: Selecting ¢
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Selection criteria for identifying a
suitable constraint value:
Bayesian Information Criterion (BIC)
e Balance complexity and
accuracy
 Shannon entropy
* |nformation maximisation
 Domain robustness
e Pattern correlation between
domain A and B
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Select the constraint value which allows to discriminate best between the regimes
(high entropy) without losing reliability (low BIC): ¢ = 0.94



Effect of Regularisation: Occurrence Rates

The overall occurrence rates of the 0.250 B Standard
: I T ] ° ZZ1 ¢ = 0.94

regimes are more distinct, indicating 02251 & o ° ?

the regularisation helps to better |

discriminate between regimes @
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The uniformity of the

ERA-Interim occurrence Fig: Occurrence rates for SEAS5 without (standard) and with

. iallv d t constraint, where the dotted and dash-dotted lines, respectively,
rates Is potentially due to give represent an equal representation of the data over the

a lack of discrimination regimes. The stars indicate ERA-Interim values.

between the regimes @



Effect of regularisation:
Data reassigr

Tab: Contingency table
indicating the reassignment
of data to a different regimes
by the regularised algorithm.

ment

The constrained
regimes are no longer
domain dependent

¢ =0.94

NAO+ NAO- AR+ SB+  AR- SB- ' No-regime | Total
< NAO+ || 27994 0 1443 5367 54 1297 | 2934 39089
.% NAO- 0 23301 87 37 9432 310 '+ 2069 36227
£ AR+ 14 3409 25867 2349 480 426 : 2981 35526
g SB+ 412 1132 208 28005 3881 50 1 2670 36358
2 AR- 12512 0 640 71 22190 795 : 2757 38965
= SB- 1946 104 722 685 1474 29265 , 3254 37450
Total 42878 27946 28967 36514 37511 32143 ' 16656 222615

NAO+ - SB+ AR- - NAO+
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Fig 1: Regimes for SEASS5 with (colours) and

Anomaly (gpm)

indicated in red in the table.

Geopotential Height

9

without (contours, same interval) constraint.

& Fig: Composites of data reassigned to a
different regime by constraint for the cases
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Sub-seasonal Variability
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A seasonal cycle in the
occurrence rates is found

Adjusting for the seasonal @
cycle of the mean climatology
(daily averages fitted with 4th-
order polynomial) nearly all
variability disappears
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Strong inter-annual signals are C')l

. cy found for NAO+, AR- and SB-,
| nte r-annuda ‘ Va 'ld b | ‘ |ty whereas the NAO- signal is weaker
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assigned to NAO+ when

considering only 4 regimes, i.e. 6 No regime

. . 0.3 1
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Inter-annual Variability: Regression Analysis

NAO+ NAO-

2061 { 06/ Regime NAO+ NAO- AR+ SB+  AR- SB- | MLR NAO-
o
G 041 R 0.4 Slope 0.994  0.980 -0.685 0.530 -0.318 1.139 1;§O+ '11‘3746821
) L O vl | ee s e e - Thtbe
3027, w0 g «r-"‘:' 0.27 & R? 0.114 ~ 0.026  0.013~ 0.014 ~ 0.009  0.134 0.199
A e N B ¢ < p 0.044 0.351 0500 0.491 0.581  0.028 0.025

0.0 010 0.15 020 0.25 0.30 0.0 010 0.15 020 0.25 0.30 Bayes Factor 8.809 1.596 1.276 1.290 1.178 13.199 54.099
Yo AR+ - SB+ Tab: Results of a linear regression analysis for regime occurrence rates.
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Fig: Scatter plots of annual regime occurrence with rate, the larger the better —\ 2 )

the dotted line showing a one-to-one relation.



Inter-annual Variability:

Sighal-to-Noise

Linear regression for an
NAO-index indicates that
here the model is better at
predicting observations than
itself with a coefficient of 2

is found for NAO+ and SB-
occurrence rates @

No signal-to-noise paradox

A poor model representation
of NAO- could be linked to
the signal-to-noise paradox
for the NAO-index @

NAO-index
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Fig: Regression analysis for an NAO-
index with a slope of 2, with the dotted
line giving the one-to-one reference line.

Regression analysis can be used to identify the signal strength: -

e Assume a true signal c(t)

* Observational time series y(t) = a c(t) + e, (t), with a the

signal strength and e, (t) noise

* Similarly for an ensemble member x;(t) = b c(t) + ey, (t)

Oy.
* Ratio of Predictable Components = 22 with gy, y the
b o v

and the ensemble mean x(t) = b c(t) + ez(t)

Regression of y(t) onto X(t) yields a coefficient of ¢/,
* 4/, > 1lindicates the model is better at predicting
observations than its own ensemble members

standard deviations of the residuals

y
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