Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

cosc-Pillar

Current State of our Work

- > 5TB of climate data transferred into DKRZ’s swift object storage
WCRP Zarr file opened with Xarray

) (:I\/IIF)ES (;551A§;$g§5ﬁ égL (:(:)FKIE)[E)((:QESFQ[)EE)(
- Developed python package and tutorial notebooks

xarray.DataArray 'tasmax' (time: 31411, lat: 192, lon: 384)

(0

Array Chunk
Why are we using Object Storage? 260 s
. . . Shape (31411, 192, 384) (30, 192, 384)
« Easy to scale and to maintain = cost effective Count 1049 Tasks 1048 Chunks —
° Driven by mEtadata Type float32 numpy.ndarray
 Direct HTTP access (no log-in required) Read-Throughput Comparison
® NetCDF Path Access 0
. H H i arr e
What is Zarr and why are we using it? k| i ————

wn

o

o
1

 Alternative to NetCDF (Network Common Data Form) 0

- Provides implementation for chunked N-Dimensional arrays
- Optimized for cloud object storage

N
o
o

1

S

Throughput MBps
w
o
o

N
o
o

How?

=
o
o

o @i

Ay https://gitlab.dkrz.de/mipdata/python_package_zarr_in_swift

o
1

0 5 10 15 20 25
Number of Cores

28.04.2021

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

This work has partially been supported by EOSC-Pillar: GA 857650 c0sc-Pillar

Transfer Data from NetCDF on Hierarchical

Storage to Zarr on Object Storage
CMIP6 Data Use Case

Marco Kulike Fabian Wachsmann Georg Siemund Hannes Thiemann Stephan Kindermann
DKRZ DKRZ University of Hamburg DKRZ DKRZ
kulueke@dkrz.de

28.04.2021 2

mailto:kulueke@dkrz.de

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

E0SC-Pillar

Abstract

This study provides a guidance to data providers on how to transfer existing NetCDF data from a hierarchical storage system
into Zarr to an object storage system.

In recent years, object storage systems became an alternative to traditional hierarchical file systems, because they are easily
scalable and offer faster data retrieval, as compared to hierarchical storage systems.

Earth system sciences, and climate science in particular, handle large amounts of data. These data usually are represented as
multi-dimensional arrays and traditionally stored in netCDF format on hierarchical file systems. However, the current netCDF-4
format is not yet optimized for object storage systems. NetCDF data transfers from an object storage can only be conducted on
file level which results in heavy download volumes. An improvement to mitigate this problem can be the Zarr format, which
reduces data transfers, due to the direct chunk and meta data access and hence increases the input/output operation speed in
parallel computing environments.

As one of the largest climate data providers worldwide, the German Climate Computing Center (DKRZ) continuously works
towards efficient ways to make data accessible for the user. This use case shows the conversion and the transfer of a subset of
the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate data archive from netCDF on the hierarchical file system
into Zarr to the OpenStack object store, known as Swift, by using the Zarr Python package. Conclusively, this study will evaluate
to what extent Zarr formatted climate data on an object storage system is a meaningful addition to the existing high
performance computing environment of the DKRZ.

28.04.2021 3

User’s

import
xarray

open_zarr(

)

sel(lat=0)

memory

tas(lat,lon) as

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

Zarr in Object Storage is promising, because

User reads directly from the cloud without authentication

Datasets are “analysis ready”
Files can be larger than memory - Less /O, faster processing

N
]

0,0

0,1

0,2

A

1,0

1,1

1,2

2,0

2,1

2,2

cosc-Pillar

Cloud Storage
like Swift or
Amazon S3

28.04.2021

~

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

cosc-Pillar

Does it keep its promises?

Our questions:
« How performant is Zarr in Swift Object Storage?
« Can Zarr be “conform” to a netCDF standard?

Our long term goals:
« Develop a python library for conversion and archiving in Swift Object Storage

Highly developing topic so we need to keep being updated:
« NetCDF implements a backend support for Zarr

28.04.2021 5

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

How to work with zarr? £05C-Pillar

In [1]: import xarray as Xr - Load reqUIrEd paCkageS
immort fosoes . fsspecis a standard interface for
opening files

In [2]: # Path to catalog des?riptor on the DKRZ server - DEfine path to CMIP6

col_url = "https://swift.dkrz.de/v1/dkrz_a44962e3ba914c309a7421573a6949a6/intake-esm/swift-cmip6.json"

catalog
- Open catalog with
intake

Open the catalog with the intake package and name it "col" as short for "collection”
col = intake.open_esm datastore(col_url)

In [3]: # Store the name of the model we chose in a variable named "climate model"
climate_model = "MPI-ESM1-2-HR" # here we choose Max-Plack Institute's Earth Sytem Model in high resolution

This is how we tell intake what data we want _ Define Sea rch dictiona ry (here:

query = dict(

source_id = climate_model, # the model . .
e D maximum daily temperature,

"tasmax", # temperature at surface, maximum

4
"day", # daily maximum 370 M P I _ESM)
) ' SSP ,
Intake looks for the query we just defined in the catalog of the CMIP6 data pool at DKRZ Sea rch Catalog With

cat = col.search(**query)

Show query results CO l ° S e a. r Ch

variable_id
table_id

cat.df
Out[3]: .
1 source_id experiment_id member_id table_id variable_id grid_label dcpp_init_year version time_range path zarr_path - S h OW res u Its I n pa n d a S d atafra I I l e
/mnt/lustre02
MPI- /work/ik1017 e
Z ESM1-2- ssp370 rlilpifi day tasmax an NaN v20190710 20150101-20191231 /CMIP6 sl - Th e Ia St COl u | | ln S hOWS th e Za rr
/v1/dkrz_a44962e3ba914c30...
HR /data/CMIP6
/Sce... h
/mnt/lustre02 p a t
MPI- /work/ik1017 httos://swift dkrz.d
z ESM1-2- ssp370 ritp1fi day tasmax an NaN v20190710 20200101-20241231 /CMIP6 , ., ups//switt.dkrz.de

28.04.2021 6

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

E0SC-Pillar

In [4]: # Select first zarr path of first file
selected_path = cat.df["zarr_path"][0]

e . Select Zarr path

Out[4]: 'https://swift.dkrz.de/v1/dkrz_a44962e3ba914c309a7421573a6949a6/CMIP6-zarr/ScenarioMIP.DKRZ .MPI-ESM1-2-HR.ssp370.day.

gn.tasmax/' from fi rSt entry

In [5]: # Define fsmap
fsmap = fsspec.get_mapper(selected_path)

- fsspec.getmapper creates key-value interface for
given URL

Load Data with the open zarr) xarray method
ds_tasmax = xr.open_zarr(fsmap, consolidated=True)

Open variable "tasmax" over the whole time range
tasmax_xr = ds_tasmax["tasmax"]

tasmax_xr

xarray.DataArray ‘'tasmax' (time: 31411, lat: 192, lon: 384) * The file Wi” be OpenEd and Sliced With Xarray

=
=

out[5]:

Array Chunk

Bytes 9.26 GB 8.85 MB
Shape (31411, 192, 384) (30, 192, 384) %, ~
o a

Count 1049 Tasks 1048 Chunks
384

S . The array has a size of 9,26 GB and is divided into
e . 1048 chunks of 8.85 MB

0 Y
lat (lat) float64 -89.28 -88.36 S
lon (lon) floaté4 0.0 (B
time (time) datetime64[ns] 2015-01-01T12:00:00 ... 2100-12-31T12:00:00 EE=
. The attributes section shows the corresponding
cell_measures : area: areacella
cell_methods : area: mean time: maximum
comment : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'ti m eta d a ta
me: max')
history : 2019-07-20T13:41:58Z altered by CMOR: Treated scalar dimension: 'height'. 2019-07

-20T13:41:58Z altered by CMOR: replaced missing value flag (-9e+33) with standard
missing value (1e+20). 2019-07-20T13:41:58Z altered by CMOR: Converted type from
'd' to 'f'. 2019-07-20T13:41:58Z altered by CMOR: Inverted axis: lat.

long_name : Daily Maximum Near-Surface Air Temperature
standard_name : air_temperature
units : K

28.04.2021 7

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

cosc-Pillar

Can Zarr map the CMIP standard?

« We convert 440 different CMIP6 datasets into Zarr and back into netCDF with xarray.

« We compare the original netCDF with the rewritten netCDF.

- Preliminary Result: Zarr is able to map all netCDF features. The data processing software
like xarray however need to be adapted to fully copy all original information. We help
ourselves with the following reformatting:

def format_dset(dset):
precoords = sef(
["lat_bnds", "lev_bnds", "ap", "b", "ap_bnds", "b_bnds", "lon_bnds"]
)
coords = [x for x in dset.data_vars.variables if x in precoords]
dset = dset.set_coords(coords)

dset.encoding["unlimited _dims"] = "time"

for var in dset.data_vars.variables:
dset.get(var).encoding["zlib"] = True
dset.get(var).encoding['complevel"] = 1

28.04.2021 8

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

cosc-Pillar

How does Zarr perform?

- We began to test the zarr read performance with a 10GB Dataset in the Swift Object Storage and

compare it with OpenDAP and netCDF on disk.
- We work on a PrePost node on DKRZ’s system mistral and use a Jupyterhub-kernel with 256GB

memory and 48 cores

® NetCDF Path Access 0
6004 @ Zarr []
® NetCDF opendap Access
" 500 - ')
)
= 400 - . 0
2 [)
_g’ 300
S 0
c o
= 200
g ° 0
100 e — b
[] ° v
()
o - 1 1 1 I 1 1
0 5 10 15 20 25

Number of Cores

28.04.2021 9

Transfer Data from NetCDF on Hierarchical Storage to Zarr on Object Storage

GitLab Links

cosc-Pillar

Python Package

% https://gitlab.dkrz.de/mipdata/python_package zarr in swift

Tutorials

% https://gitlab.dkrz.de/mipdata/zarr-in-swift-objectstorage

Performance Tests

\ 4 https://gitlab.dkrz.de/b381359/parallelrechnerevaluation-projekt

28.04.2021 A

