Evaluating the differenced Normalized Burn Ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forest

MSc research project Alisha Combee

Supervisors: Sander Veraverbeke, Clément Delcourt, Guido van der Werf

Introduction

- Remote sensing
- Boreal forest → large carbon stock
- Organic rich soils consumed by fires
 - Emissions → belowground combustion
- Climate change & fire regime

Image source: Greenpeace international

Introduction

- Fire severity assessment
- Boreal North America
 - Black spruce forests
 - Landsat
- Siberia:1/3rd of all boreal forest
 - very little research conducted
- Novelty: usage of Sentinel-2 in Siberia

Study area

- Yakutsk, Russia
- 2 fire scars
 - Batamay (2017)
 - Yert (2018)
- 800 and 900 km2 respectively

False color composite (Level 2A, RGB-8a43)

Forest types

• Dense, larch (Larix cajanderi) dominated

 Open, mixture of larch and pine (Pinus sylvestris)

• Open, larch dominated

Images by C.J.F. Delcourt

Field data

- Data collected in summer 2019
- 41 burned plots
- 2 Field variables:
 - GeoCBI, focussed on aboveground severity
 - Burn depth, focussed on belowground severity

GeoCBI

- Visual assessment tool
- Values range between 0.0 and 3.0
- → Unburned to burned

- Unburned plot
- GeoCBI= 0

- Moderate fire severity
- GeoCBI= 1.33

- High fire severity
- GeoCBI= 2.71

Images by C.J.F. Delcourt

Burn depth

- Soil organic layer (SOL) depth measured in each burned plot
- Adventitious roots
 - Used to estimate pre-fire soil surface and burn depth
- Burn depth = pre-fire SOL depth residual SOL depth

Image by C.J.F. Delcourt

Imagery and pre-processing

- Sentinel-2 (20 m resolution)
- Anniversary data
- Atmospherically corrected using Sen2cor
- NIR (B8a) & SWIR (B12)
- Normalized Burn Ratio (NBR) \rightarrow NBR = $\frac{NIR-SWIR}{NIR+SWIR}$
- Differenced NBR (dNBR) $\rightarrow dNBR = NBR_{pre-fire} NBR_{post-fire}$

Results

• dNBR map representing overall fire severity

- Relationships between:
 - GeoCBI and dNBR
 - Burn depth and GeoCBI
 - Burn depth and dNBR

- Dense forest, dominant with larch
- Open forest, dominant with larch
- Open forest, mixture of larch and pine

GeoCBI – dNBR

- Linear regression
- Overall $R^2 = 0.38$ (p < 0.001)
- Higher R² when separated in forest type

1.606

1.354

0.491

0.329

Open plots, dominant LC

Burn depth- GeoCBI

- Non-linear relationship
- Saturated growth model
- Overall not strong (R²=0.11) but significant p<0.05

	а	b	R ²	RMSE
All plots	0.081	0.076	0.110	3.709
Dense plots, dominant LC	0.057	0.017	0.272	4.073
Open plots, dominant LC	0.069	0.070	0.173	3.982

Burn depth- dNBR

- Non-linear relationship
- Saturated growth model
- Strongest relationship: dense larch forest

0.090

0.005

0.063

3.302

Open plots, dominant LC

Discussion

- Similarities with boreal North American forests
 - dNBR predictor above ground severity
 - potential for predicting burn depth
 - Vegetation specific dependency
- Above- and belowground severity are partly correlated

 \rightarrow Explains the burn depth- dNBR relationship

- Belowground combustion cannot be derived from satellite data only → synergies dNBR important
 - e.g. weather conditions and moisture content

Conclusion

• Sentinel-2 imagery useful for determining fire severity in Siberian larch forest

• dNBR strong predictor for GeoCBI, some potential for predicting burn depth

• Results confirm earlier findings in boreal North America (spruce-dominated forest)

