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! LOCATION

*+ extensive green roof of University Centre for Energy
Efficient Buildings (UCEEB), Bustehrad, Czechia (Fig. 1)

* average annual precipitation total 500 mm, average
annual temperature 8°C

» site equipment - rain gauge, soil and air temperature
probes, wind speed and direction, relative humidity of
the air, and net radiation (Fig. 2)
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P2 INTRODUCTION

The admixture of light porous minerals such as pumice or
expanded clay in artificial substrates could lead to dual porosity
character of substrates and may affect their retention properties.
The dual-continuum model S1D is used to assess water flow in
extensive green roof test beds with artificial substrate. The model
numerically solves dual set of Richards' equations. The soil
hydraulic properties are described using van Genuchten-Mualem
approach. Selected model parameters were optimized using
Levenberg-Marquardt algorithm.

Meteorological

0 .
..................................................................................................................................

Fig. 1: Experimental site on the roof of the building with four
green roof test beds.

Fig. 2: University Centre for Energy Efficient Buildings (UCEEB), Bustehrad, Czechia.



@ MODEL ’

A dual set of Richards' equations (Vogel et al. 2000) is used for
simulation of variable saturated water flow (S1D, Vogel et al., 2010):

iy
26, @ oh,, T, =
— = —(Kp ==+ P 5, +— ,
dt 0z 0z W 5
-
a6 d dh I’ :
_ Bl e, e
ot 0z 0z Wy <&
_—y E VARIABLES:
: h soil water pressure (m)
: €] soil water content (m3m-3)
. Y 4 . .? ) K soil hydraulic conductivity (m s
Water potential gradient method is used to determine actual < ' : s sink term (s1)
evapotranspiration (Vogel et al. 2013; 2016): : t time ©)
e R(Z) Zo : Z vertical coordinate Em))
H ¥ water transfer term 1/s
S(Z) = ° [Hsoil (Z) 23 H‘rx] ET — f S(Z)dZ “4 ) m subscript denotes soil matrix
rSOil (Z) o T‘r‘oot ZR : f subscript denotes preferential flow
T root radial resistance (s)
: : eell soil hydraulic resistance (s)
Hourly potential evapotranspiration was estimated Lot Hsoi bulk-soil water potential (m)
by Penman-Monteith method. . root xylem water potential (m)
: : R effective root length density (m-2)
: : 0 average active root radius (m)
Evaluation of atmospheric boundary condition also involved Zr, 2 coordinates of the root zone (m)
modified interception model of Liu (1997). T actual transpiration (ms) 3
3 T potential transpiration (miSEURN ‘

Fig. 3: Uncovered drainage layer after 3 years of operation.



/ EXPERIMENTAL SETUP

observed test beds (effective dimension 1 x 1 m?, Fig. 4) consist of typical extensive
green roof layers (Fig. 5) and metal structure,

* outflow is measured by tipping bucket flowmeters, the moisture content within the
soil substrate by TDR probes, one of the test beds is weighted

* pre-grown sedum carpet or sedum cuttings were applied as vegetation cover

+ test beds are filled with commercial soil substrate — a mixture of spongilite (55 %),
crushed expanded clay (30 %) and peat (15 %)

« among others, Flores-Ramirez et al. (2018) reported bimodal character of the
spongilite and expanded clay retention curve
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Fig. 3: Vertical proflle of the test bed.




= STUDIED PERIOD
from 15th of May to 31th of May - Oa USED PARAMETERS

SRS QITENIS S S22 [T Bimodal character of the studied soil admixtures is
observed outflow from test bed:

(Fig. 6) represented by single domain or two domains respectively.
'9- ; Hydraulic parameters of the domains described using van
Genuchten-Mualem approach.
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6, (-) 8, (-) o (1/cm) n(-) K, (cm/d)

0.00 0.293 0.495 1.86 671
0.00 0.169 (0XZ3510) 2.70 5000
0, (-) 0, (-) a(1/cm) n(-) K, (cm/d)
THE FIRST DOMAIN 45 % — PEAT AND CRUSHED EXPANDED CLAY
0.00 0.200 0.504 1.57 32
0.00 0.169 0.450 2.70 510/0/0)

THE SECOND DOMAIN 55 % — SPONGILITE

TEST BED ACu e !
Fig..6: Hydrologicaltesponse of the test bed ACu was chosen

toassess. The abbreviation.ACu-refer to used soil'substrate
ACRE and initial vegetation.coversedum.cuttings.

0.00 0.500 0.331 1.73 1100
0.00 0.169 0.450 2.70 510/0/0]

Tab. 1: Model parameters for both scenarios. Selected parameters
(formatted in bold) were optimized using Levenberg-Marquardt algorithm
(Doherty et al. 2014).
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I CURRENT RESULTS SEER S, -

simulated outflow and water content are compared with measured counterparts in the test beds ACu (Fig. 7)
 although outflow prediction is very good in both cases (NSE over 0.98), dual-continuum model provided better description of water content
e parameters of dual-continuum model better fit to measured retention curve parameters (not shown here)
* simulations forlonger time periods and other test beds need to be done to confirm or disprove the assumption of bimodal soil substrate character i

o
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Fig. 7: Model results for dual-continuum model and single-continuum model, respectively.
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CONCLUSIONS
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