

Soil N₂O emissions from temperate cropland agroforestry and monoculture systems

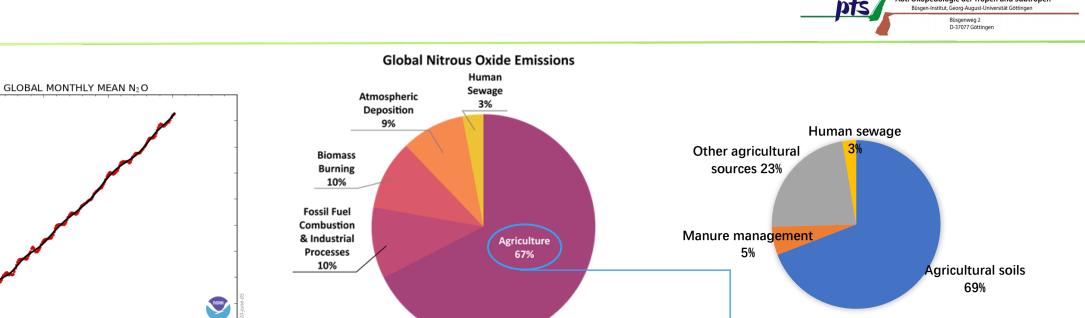
Guodong Shao, Guntars Martinson, Jie Luo, Xenia Bischel, Dan Niu, Marife D. Corre, Edzo Veldkamp

Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen

Introduction

334

332


330

N₂ O mole fraction (ppb) 875 875 875 875

320

318

316 2000

Nitrous oxide (N_2O) :

2005

With a global warming potential (GWP₁₀₀) 298 times higher than $CO_2^{1,2}$ ٠

2020

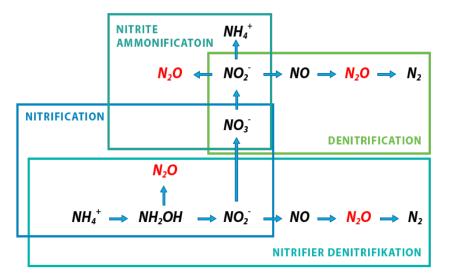
2025

Main contributor to the depletion of the stratospheric ozone layer ^{3,4} .

Global source:

Agriculture represents the largest anthropogenic source^{1,2}

2015


Year

Emissions from agricultural soils dominate⁵

2010

Production:

Microbial nitrification and denitrification⁶ •

Abt. Ökopedologie der Tropen und Subtropen

Büsgen-Institut, Georg-August-Universität Göttinge

Introduction

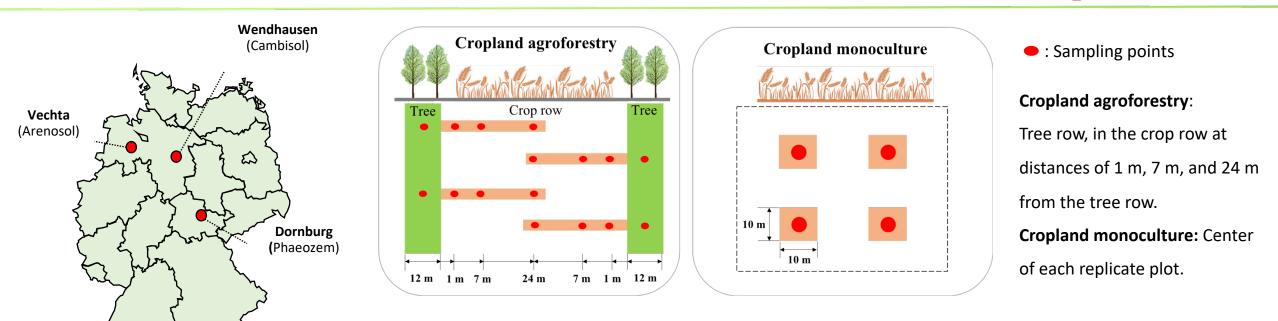
Agroforestry

-- Trees combined with crops and/or livestock on the same unit of land

Benefits:

- -- Higher water-use efficiency¹
- -- More efficient use of available nutrients²
- -- Higher value of ecosystem services³

Question:


No systematic comparison was conducted of soil N_2O emission between cropland agroforestry and monoculture systems in Western Europe

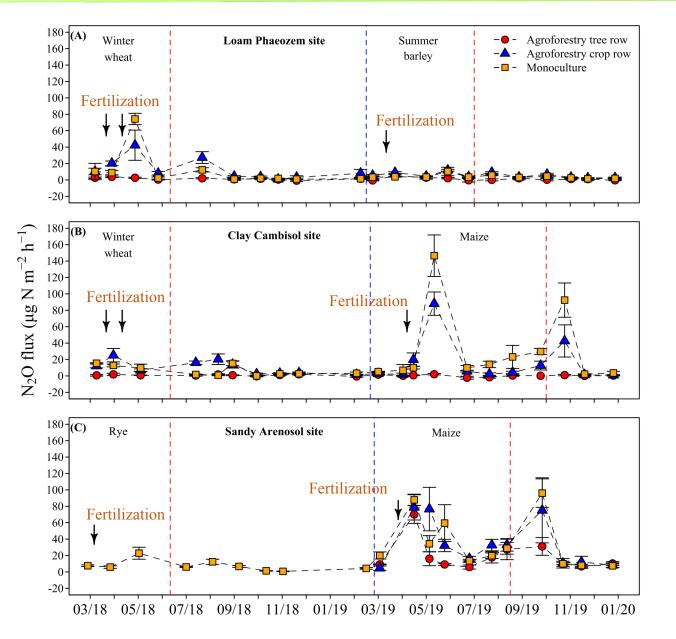
Objectives:

To quantify the spatial-temporal dynamics of soil N₂O fluxes and to determine the controlling factors from cropland agroforestry and cropland monoculture systems

Experimental design

Abt. Ökopedologie der Tropen und Subtropen Büsgen-Institut, Georg-August-Universität Göttingen Büsgerweg 2 D-37077 Göttingen

Monthly measurement: N_2O fluxes, soil temperature, water-filled pore space, and mineral N (NH_4^+ and NO_3^-)



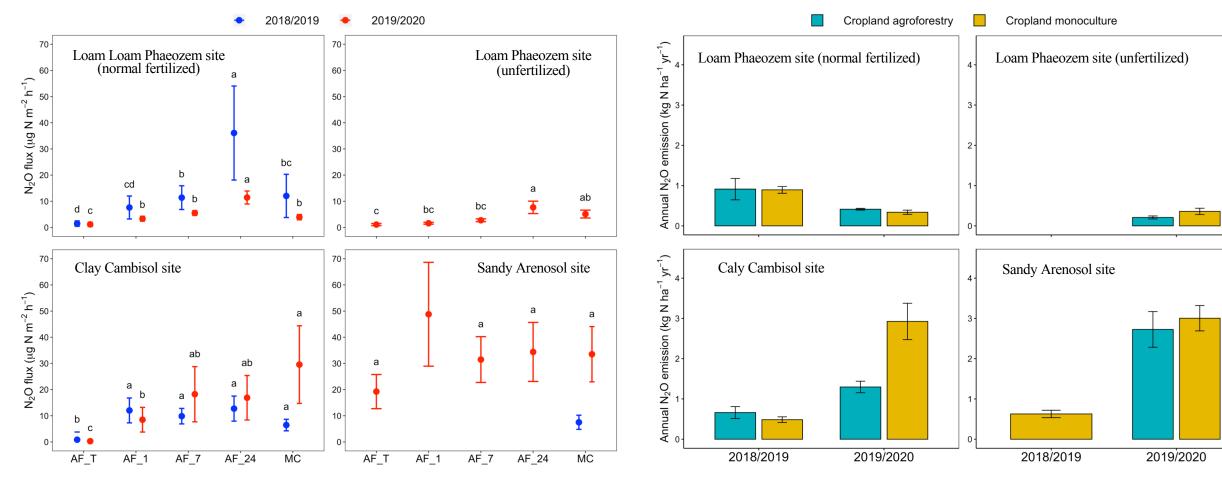
Soil type/	Study year	Crop rotation	Sowing	Harvesting	Tillage	Fertilization	Fertilization date	N input
Study site						date	(kg N-P-K ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)
Calcaric	2018/2019	Winter wheat	Oct 2017	Jul 2018	Oct 2018	04.04.2018	133-0-0	213.0
Phaeozem/						17.05.2018	80-0-0	
Dornburg	2019/2020	Summer barley	Mar 2019	Jul 2019	Oct 2019	01.04.2019	36.1-21.6-30.5	36.1
Vertic	2018/2019	Winter wheat	Oct 2017	Jul 2018	Aug 2018	06.03.2018	70-0-0	166.0
Cambisol/						20.04.2018	60-0-0	
Wendhauser	1					14.05.2018	36-0-0	
	2019/2020	Maize	Apr 2019	Oct 2019	Nov 2019	07.05.2019	101.0-0-0	101.0
Arenosol/	2018/2019	Rye	Oct 2017	Jul 2018	Aug 2018	01.04.2018	188.0-26.4-107.8	188.0
Vechta	2019/2020	Maize	Apr 2019	Sep 2019	Sep 2019	28.04.2019	153-72.6-62.3	153.0

Results: Temporal changes of N₂O fluxes

- High seasonal variability intra-and inter-annually
- Fertilizer stimulate N₂O emission
- Crop residues might regulate N₂O

production during after harvest season

N₂O fluxes from agroforestry crop row: $F_{Crop} = (4 \times F_{1m} + 18 \times F_{7m} + 2 \times F_{24m})/24$

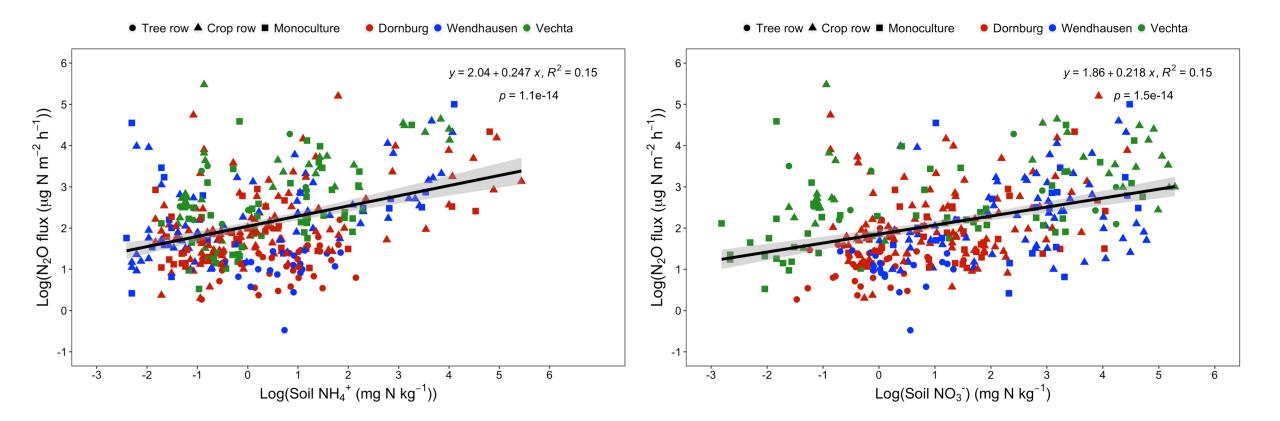

 F_{1m} : N₂O fluxes in the 1 m distance from tree row F_{7m} : N₂O fluxes in the 7 m distance from tree row F_{24m} : N₂O fluxes in the 24 m distance from tree row

Abt. Ökopedologie der Tropen und Subtroper

üsgen-Institut, Georg-August-Universität Götting Büsgenweg 2 D-37077 Göttingen

Results: N₂O emission

Abt. Ökopedologie der Tropen und Subtropen Büsgen-Institut, Georg-August-Universität Göttingen Büsgenweg 2 D-37077 Göttingen



AF: Cropland agroforestry MC: Cropland monoculture AF_T, 1, 7, 24: Sampling locations in cropland agroforestry

N₂O emission from cropland agroforestry: $E_{AF} = (6 \times E_{tree} + 4 \times E_{1m} + 18 \times E_{7m} + 2 \times E_{24m})/30$ Annual N2O emission between AF and MC:

Loam Phaeozem site and Sandy Arenosol site: No difference Clay Cambisol site: no difference in 2018/2019, AF < MC in 2019/2020

Across all sites, the positive correlations between soil N_2O fluxes with mineral N support the major controlling roles of NH_4^+ and NO_3^- in the production of N_2O from soil.

- Cropland agroforestry has the potential to decrease soil N₂O emissions compared to monoculture but unreasonable fertilization management may reverse this trend
- Spatial variation of soil N₂O fluxes in agroforestry crop row may be affected by trees in agroforestry system
- Soil mineral N and WFPS were major controlling factors for N₂O fluxes in cropland agroforestry and monoculture systems

Other studies in our project:

Session BG3.19 – Exchange of GHG and reactive gases in agricultural ecosystems EGU21-886: Gross rates of soil N_2O emission and uptake and denitrification gene abundance in temperate cropland agroforestry and monoculture systems by Jie Luo et al.

Session SSS9.7 - 'Impact of conventional agriculture and organic farming on soil functions

EGU21-10463 :Soil-N cycling in temperate alley cropping agroforestry and monoculture croplands by Xenia Bischel et al.