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Abstract

• We presents local gravity field modelling in spatial domain using the finite element
method (FEM).

• For such a problem we derive a new numerical scheme where the oblique derivative
BC are considered directly at computational nodes on the discretized Earth’s
topography.

• The developed FEM approach is tested by a reconstruction of a known harmonic
function (EGM2008) above the extremely complicated Earth’s topography in the
Himalaya.

• A main numerical experiment is focused on very detailed local gravity field
modelling in Slovakia using terrestrial gravity data.
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Formulation of the FGBVPs

• In the bounded domain Ω, we consider the following BVP

∆T (x) = 0, x ∈ Ω ⊂ R3, (1)

∇T (x) · s(x) = −δg(x), x ∈ Γ ⊂ ∂Ω, (2)

T (x) = TSAT (x), x ∈ ∂Ω− Γ, (3)

where Γ ⊂ ∂Ω represents the part of the Earth’s topography, ∂Ω− Γ represents the
top boundary together with side boundaries, and TSAT is the disturbing potential
generated from any GRACE/GOCE-based satellite-only geopotential model.
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Formulation of the FGBVPs

Figure 1: The computational domain Ω. The domain Ω is delimited by blue edges; the bottom
surface Γ ⊂ ∂Ω hatched by green colour represents a chosen part of the Earth’s surface; B, L, h
coordinates denote ellipsoidal latitude, longitude and height, respectively.
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Solution of the GBVP by the FEM on non uniform mesh

• In our approach, we follow the fundamental principles of FEM published in 1.

• We multiply the equation (1) by w ∈ V and using Green’s identity we get∫
Ω

∇T · ∇w dxdydz =

∫
∂Ω

∇T · nw dσ, w ∈ V . (4)

Now we split the oblique vector s into one normal and two tangential components

s = c1n + c2t1 + c3t2, (5)

where n is the normal vector and t1, t2 are tangent vectors to Γ ⊂ ∂Ω ⊂ R3. These
three vectors together form an orthonormal basis.

1J.N. Reddy, An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Education,
New York, ISBN: 9780072466850 (2006)
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Solution of the GBVP by the FEM on non uniform mesh

• Then we put (5) into (2) to obtain

∇T · s = c1∇T · n + c2∇T · t1 + c3∇T · t2 = −δg . (6)

• From (6) we express the normal derivative

∇T · n =
−δg
c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2
(7)

and we insert it to (4) to get∫
Ωe

∇T · ∇w dxdydz =

∫
Γe

(
−δg
c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2

)
w dσ +

∫
∂Ωe\Γe

∇T · nw dσ.

(8)
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Solution of the GBVP by the FEM on non uniform mesh

• After some rearrangement, we have∫
Ωe

∇T · ∇w dxdydz +
c2

c1

∫
Γe

∂T

∂t1
w dσ +

c3

c1

∫
Γe

∂T

∂t2
w dσ =

=

∫
Γe

−δg
c1

w dσ +

∫
∂Ωe\Γe

∇T · nw dσ. (9)

• In this way, we have obtained the weak formulation (4) or (9) of the BVP (1)-(3)
on every element Ωe of our finite element discretization. The study of weak solution
of the oblique derivative BVP is included in the book by Lieberman2.

2G.M. Lieberman, Oblique Derivative Problems for Elliptic Equations, World Scientific Publishing
Co. Pte. Ltd., Hackensack, NJ, ISBN: 978-981-4452-32-8 (2013)
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Solution of the GBVP by the FEM on non uniform mesh

• To evaluate boundary integrals over a boundary Γe in Eq. (9), which include
tangential derivatives, we approximate derivatives in the tangential direction like in
the finite difference method. So using values of basis functions at nodes Ne

j of
element Ωe we have

∂ψj

∂tj ,1
≈

ψj(N
e
j+1)− ψj(N

e
j )

d(Ne
j ,N

e
j+1)

, (10)

∂ψj

∂tj ,2
≈

ψj(N
e
j−1)− ψj(N

e
j )

d(Ne
j ,N

e
j−1)

, (11)

where d denotes the distance between two neighbouring nodes that corresponds to
the length of edge of an element Ωe .
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Solution of the GBVP by the FEM on non uniform mesh
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Figure 2: Illustration of tangent vectors tei,j to bottom boundary Γe at nodes Ne
i of an

element Ωe .
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Reconstruction of EGM2008 over the Himalayas

• Numerical experiments aim to demonstrate how precise we are able to reconstruct a
harmonic function above the extremely complicated Earth’s topography in the
Himalayas and Tibetan Plateau.

• The EGM2008 geopotential model up to degree 21603 has been used.

• The upper boundary has been chosen at the altitude of 230 km above the reference
ellipsoid corresponding to an average altitude of the GOCE satellite orbits. The
bottom boundary has been given by grid points located on the Earth’s surface.
Their spacing in horizontal directions has been uniform. Their heights have been
interpolated from the SRTM30 PLUS topography model4.

3N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor, The development and evaluation of the Earth
Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406,(2012)

4J.J. Becker, et al., Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30
PLUS, Marine Geodesy, 32,4, 355-371, (2009)
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Reconstruction of EGM2008 over the Himalayas

Figure 3:

Figure 3: a) The Earth’s surface topography

in the Himalayas and Tibetan Plateau (the

bottom boundary), b) gravity disturbances

(the oblique derivative BC), c) the disturbing

potential generated from EGM2008 on the

Earth’s surface (a reconstructed harmonic

function), and (d, e, f) residuals between the

FEM solutions and EGM2008 for different

discretizations of the computational domain:

d) 501 x 301 x 25, e) 1001 x 601 x 49, and f)

2001 x 1201 x 97.
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Reconstruction of EGM2008 over the Himalayas

Table 1: Statistics of residuals between our FEM solution and EGM2008 on the bottom
boundary in the Himalayas (units: m2s−2)

No. of nodes 501× 301× 25 1001× 601× 49 2001× 1201× 97

Min. value -4.26 -5.69 -3.07
Mean value 0.17 0.01 -0.02
Max. value 7.19 2.12 0.76

St. deviation 0.61 0.17 0.09
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Reconstruction of EGM2008 over the Himalayas

Table 2: Statistics of residuals between our FEM solution and EGM2008 in the whole 3D
computational domain above the Himalayas (units: m2s−2)

No. of nodes 501× 301× 25 1001× 601× 49 2001× 1201× 97

Min. value -2.80 -1.48 -0.75
Mean value 0.95 0.41 0.18
Max. value 20.90 10.98 3.25

St. deviation 1.45 0.65 0.29
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Local gravity field modelling in Slovakia

• Input data
◦ gravity disturbances: generated from the detailed map of the Complete Bouguer

Anomalies5 using the CBA2G software6

◦ disturbing potential on top and 4 side boundaries: EIGEN-6C4 geopotential model up
to d/o 2160 7

◦ terrestrial data: Earth’s topography with the horizontal resolution 100 x 100 m

• Computational domain
◦ number of elements: 4,700 x 2,500 x 450 (longitude x latitude x height)

5R. Pašteka, et al., High resolution Slovak Bouguer gravity anomaly map and its enhanced
derivative transformations: New possibilities for interpretation of anomalous gravity fields.
Contributions to Geophysics and Geodesy, 47 (2), pp. 81-94. DOI: 10.1515/congeo-2017-0006 (2017)

6I. Marušiak, et al., CBA2G (Complete Bouguer Anomaly To Gravity), program for calculation of the
gravity acceleration from complete Bouguer anomaly, program guide. Manuscript, G-trend Ltd, (2015)

7Ch. Förste, et al., EIGEN-6C4 The latest combined global gravity field model including GOCE data
up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. (2014)
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Local quasigeoid model in Slovakia

Figure 4: Gravity disturbances on the Earth’s topography as the oblique derivative BC on the
bottom boundary
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Local gravity field modelling in Slovakia

• To get a local quasigeoid model, the disturbing potential T obtained on the bottom
boundary, i.e. at points directly on the Earth’s surface, has been transformed into
the quasigeoidal heights ξ.

• To validate its precision, the GNSS/levelling test has been performed at 396
benchmarks. The local quasigeoid model has been also compared with DVRM05
(Digital Vertical Reference Model), which is currently “an official model in Slovakia
to transform ellipsoidal heights (determined by GNSS in the ETRS89 system) into
sea level heights, namely into the normal heights in the Bpv vertical system”
(www.geoportal.sk).
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Local quasigeoid model in Slovakia

Figure 5: Local quasigeoid model in Slovakia as the FEM numerical solution of FGBVP (the
horizontal resolution: 100 m x 100 m)
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Local quasigeoid model in Slovakia

Figure 6: GNSS/levelling benchmarks with differences between the obtained local quasigeoid model and DVRM05.
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Local quasigeoid model in Slovakia

Table 3: Statistics of the GNSS/levelling test of the recent quasigeoid models at 396
GNSS-levelling benchmarks.

Local The FEM The FVM Spherical
quasigeoid approach approach8 Radial Basis
model Functions 9

Range 19.3 cm 20.5 cm 18.8 cm
Mean 22.3 cm 23.1 cm -53.7? cm
St. dev. 2.54 cm 2.63 cm 2.46 cm

? the mean value differs due to different transformation of the disturbing potential and related to the GRS-80
reference ellipsoid

8Čunderĺık, M. Medl’a, K. Mikula, Local quasigeoid modelling in Slovakia using the finite volume
method on the discretized Earth’s topography. Contributions to Geophysics and Geodesy, 50(3),
287-302.

9B. Bucha, J. Janák, J. Papčo, A. Bezděk, High-resolution regional gravity field modelling in a
mountainous area from terrestrial gravity data, Geophysical Journal International, Volume 207, Issue 2,
1 November 2016, 949–966, (2016)
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Conclusions

• We have presented an numerical scheme to approximate the solution of the Laplace
equation with an oblique derivative boundary condition by the finite element
method.

• Reconstruction of EGM2008 as a harmonic function over the Himalayas and Tibetan
Plateau has shown that with a sufficient refinement of the discretization we are able
to achieve “cm-level” accuracy, even on such extremely complicated Earth’s surface.

• Our approach based on the local gravity field modelling in spatial domain using
FEM on the unstructured 3D mesh about the real Earth’s topography has resulted
in the quasigeoid model whose accuracy is about 2.54 cm.
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