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SIMULATING A TURBULENT PLASMA: HYBRID
VLASOV-MAXWELL CODE [VALENTINI ET AL., 2007]

Normalized! equations used:

@ Vlasov equation for the ion distribution function:

of of
= .VFf+(E+VvAB)-—=0 1
T +v-Vf+(E4+vAB) Y (1)
@ The Ohm's law for the electric field:
1 1 1 d2 1
E-d?V?E=—(uAB)+=(JAB)+ ~d?V Tl — “VPe+ -2V -[uJ + Ju] — —d?V - (ﬂ)
n n n n n I(‘l2)

the ion density n, the ion bulk velocity u and the ion pressure tensor I are obtained as the
moments of the ion distribution function f.

@ Faraday’s equation:
oB
— =-VAE J=VAB 3
5 ®3)

@ n; ™~ ne

Box: 3072*3072 grid points, resolution ~ 0.1d;

Lto ion mass, ion cyclotron frequency Q;, Alfvén velocity and ion skin depth dj
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MOTIVATIONS (CONTEXT: MAGNETIZED TURBULENT SPACE PLASMAS)
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Reconnection occurs in the presence of strong current density



MOTIVATIONS (CONTEXT: MAGNETIZED TURBULENT SPACE PLASMAS)
|J|, t=247
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MOTIVATIONS (CONTEXT: MAGNETIZED TURBULENT SPACE PLASMAS)
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MOTIVATIONS (CONTEXT: MAGNETIZED TURBULENT SPACE PLASMAS)

110
|Bin—ptanc

195.0
1925

190.0

115

0.36

0.27

0.18

0.09

0.00

0.275

0.245

0.215

0.185

0.155

0.125

0.095

0.065

0.035

0.005

arrows: Ve, _yiane - mean(Vey,

plane)

0.436

0.400

0.344

10.288

0.232

0.176

0.120

0.064

0.008

0.00432

0.00384

10.00336

0.00288

0.00240

10.00192

0.00144

0.00096

j0.00043

0.00000

200.0)

197.5

195.0

192,

190.0

187.5

f)
0.00450
0.00375

1950 0.00300

192
0.00150
190.0) .
10.00075
0.00000
-0.00075
-0.00150

-0.00225




MOTIVATIONS (CONTEXT: MAGNETIZED TURBULENT SPACE PLASMAS)

o At today magnetic reconnection can be accurately identified by human
analysis, but no well verified technique to automatically detect it has been
developed?

o Big data — need to speed up analysis

SETTING-UP SOME ALGORITHMS (WHICH USE MACHINE
LEARNING) AIMED AT automatically detecting THE PRESENCE
OF CURRENT SHEET (CS) AND MAGNETIC STRUCTURES WHERE

RECONNECTION IS OCCURRING (2D)

[Sisti et al., 2021]

The research is developed in the framework of an european project called AIDA project
(Artificial Intelligence Data Analysis) http://www.aida-space.eu/.

2Some times W flux function has been used BUT it cannot in 3D sims or in satellites’ datal
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DIFFERENCES BETWEEN SUPERVISED AND
UNSUPERVISED ML

Supervised Machine Learning

o A ML algorithm is said to be
“supervised"” if it uses a ground
truth or “labeled” data.

@ Training set of labeled data —
the algorithm learns the rules —
the rules can be applied to
other data sets.

4

In collaboration with Centrum
Wiskunde & Informatica,
Amsterdam, The Netherlands
[Hu et al., 2020]

M. SISTI ET AL.

Unsupervised Machine Learning

@ A machine learning algorithm is
said to be unsupervised if it
does not use a ground truth or
“labeled” data.

@ It looks on its own for patterns
in the data that hint at some
underlying structure.

4

In collaboration with CINECA,
Bologna, Italy [Sisti et al., 2021]
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ALGORITHM WITH UNSUPERVISED ML: VARIABLES

(a) current density |J|

(b) in-plane electron velocity

(c) electron vorticity Qe = V A Ve

(d) in-plane magnetic field

(e) electron decoupling: E’ = E + Ve A B, z-component
(F)J-E




ALGORITHM WITH UNSUPERVISED ML: ALGORITHM
DESCRIPTION

@ Tuning k for the k-means model

@ K-means (Lloyd's algorithm) — variable space
@ DBscan algorithm — physical space

@ Threshold on clusters’ aspect ratio

Both K-means and DBscan are techniques of unsupervised ML with the aim to
learn a grouping structure in a dataset (clustering techniques).

ING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



1. TUNING K FOR THE K-MEANS MODEL

Annoing-fact: K-means approach need us to define how many clusters (k) we believe
there are in our dataset.

Risk: underfitting or overfitting of the data

Underfit Optimal Overfit
o * o * o *
s ®® s ®® . 00
¢ ° ¢ o . “ e}
| g @ LI ol g ® e @ N g @ e O
2| % o e e 2% o o0’ 2(%, 0 o o
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What under- and overfitting looks like for clustering tasks. In the
left-side plot, the clusters are underfit (fewer clusters have been identified than
actually exist). In the right-side plot, the clusters are overfit (real clusters are
broken up into smaller clusters). In the center plot, an optimal clustering model
has been found that faithfully represents the structure in the data.

FIGURE: from [Rhys, 2020]




1. TUNING K FOR THE K-MEANS MODEL

When we don't know how many clusters we expect to find, we can use
optimization techniques, such as Davis-Bouldin index.

Intracluster variance Distance between
centroids

o’
®.
\‘OOO

o] OOO

o ©

Variable 1 Variable 1

Variable 2
Variable 2

The Davi in index the int (withil er)
variance (left-side plot) and the distance between the centroids of each cluster
(right-side plot). For each clus‘ter. its nearest neighboring cluster is identified, and
the sum of their int v is divi by the difference between their
centroids. This value is calculated for each cluster, and the Davies Idin index
is the mean of these values.

FIGURE: from [Rhys, 2020]

The smaller the value of the Davies-Bouldin index,
the better the separation between clusters.




1. TUNING K FOR THE K-MEANS MODEL: OUR
RESULTS

David-Bouldin index, tuning at t=247

1.125
1 1.100
<
51075 @ Tuning at a “central” time for our
8- simulation (t =~ 247€);), for which

1.050 the current sheets are well

developed
1.025 o k=11
5 10 15
K

FIGURE: Davies-Bouldin index for our data
set, t ~ 247 (Sisti et al. 2020 ApJ,
accepted)
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K-MEANS (LLOYD’S ALGORITHM)

Initial centroids Iteration 1 Iteration 2
]
(o]
o 50°
x o
& X o o
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O o = c o
Variable 1 Variable 1 Variable 1
Iteration 3 Iteration 4 Iteration 5

Variable 2
Variable 2
Variable 2

Variable 1 Variable 1 Variable 1
Five i i of k ing. In the top-left plot, three il
ters are inthe feature space (crosses). Cases are assigned

to the cluster of their nearest center. At each iteration, each center moves to the
mean of the cases in its cluster (indicated by arrows).

FIGURE: from [Rhys, 2020]




2. K-MEANS (LLOYD’S ALGORITHM): OUR RESULTS

Cluster | [J] Vol 9] Eieecl0™? Binprane] [J-(E+ V. x B)[10-® | Grid point number
| 1 0.369 0.253 1.239 0.031 0.138 0.930 37776]
2 0059 0125 0162 0021 0.402 0.170 160928
3 0036 0239 0049 0022 0.109 0.079 503803
0.033 0173 0.055  0.021 0.242 0.060 660889

5 0027 0078 0045 0.021 0.286 0.053 685840

6 | 0031 0145 0040 0021 0.049 0.062 813751

70025 0153 0031 0021 0.168 0.041 1165723

8 | 002 0063 002 0021 0.072 0.039 1243427

9 002 0060 002 0021 0.207 0.039 1278303

10 | 0022 0070 0024 0021 0144 0.037 1325111

10020 0128 0022 0021 0.108 0.034 1471633

Clusters K-means (1st), t=247, over |J]|

1.08
096 @ k-means can be applied to every time
::“, @ We choose the interesting cluster: 1
::32 In the physical space the cluster 1 is given by ALL the
0.36 red regions in the figure (all together!)
::1): @ We see the cluster 1 is made up by different structures

200 E 0.00 — we need to differentiate these structures in the

N

physical space — DBscan algorithm
From [Sisti et al., 2021]




3 . D B SCAN (DENSITY BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE)

iniBatchKMeanffinityPropagation Meanshift _SpectralClustering _ Ward_AgglomerativeClustringdBSCAN OPTICS Birch

o; 01



https://scikit-learn.org/stable/modules/clustering.html

3 . D B SCAN (DENSITY BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE)

Is the selected case Are the reachable
a core point? cases core points?
~ (\‘I.Con points contain o °
% 2 minPts in their €. ﬁg
(G
° 2. Search € of
© r:;;abtl:cases. L4
Variable 1 S Variable 1
Parameters:
Stop when no more Move to next
reachable cases. unvisited point. .
3. Border points are within @ €. Sea rCh rad 1us
a core point’s €, but don't
o ° have minPts in their own. . .
3 3@ e minPts: minimum number
gﬁ 5 NEI‘ of points that a cluster
4. Noise point —| .
e 5. Gusterof must have in order to be

connected cases .

defined as a cluster.
The DBSCAN algorithm. A case is selected at random, and if

its epsilon radius (€) contains minPts cases, it is considered a core point.

Reachable cases of this core point are evaluated the same way until there

are no more reachable cases. This network of density-connected cases is

considered a cluster. Cases that are reachable from core points but are

not themselves core points are border points. The algorithm moves on to

the next unvisited case. Cases that are neither core nor border points are

labeled as noise.

FIGURE: from [Rhys, 2020]. In this example minPts = 3.




3. DBSCAN: OUR RESULTS

Clusters (K-means + DBscan), t=247, over |J|

1.08
0.96
0.84
0.72

0.60 . . . .
— 150 @ ¢ =50 (in grid points unit, i.e.

> 0.48 y
0.36 =~ 5d;)

0.24 @ minPts = 100
0.12
0.00

Our parameters for DBscan:

100 200
x [dy]

From [Sisti et al., 2021]
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4. MR RECOGNITION: ASPECT RATIO THRESHOLD

length
AR = jvid:h
o Sweet-Parker model: o~ n o ST 1/2 R where 2§ is the width, 2L

is the length, S is the Lundqmst number which gives the ratio between the
diffusive time and the Alfvén one, and R is the reconnection rate — too slow

@ Fast reconnection: R ~ 0.1
» Hall term included in Ohm'’s law and decoupling of the electron dynamics
because of inertial term
» - AR~ 10

@ Karimabadi stated: “An interesting idea that yields an estimate for the aspect ratio of the
diffusion region is based on linear theory mode. Since tearing mode is the eigenfunction of
a current sheet, one may suppose that a sufficient condition for reconnection is for the
tearing to be unstable. The wavenumber for the most unstable tearing mode
[Karimabadi et al., 2005] is given by ké = ? ~ 0.5 or % ~ 0.08, where ¢ and L are the
width and length of the diffusion region. This is in reasonable agreement with the rate of
~ 0.1 which is often observed in various reconnection regimes.” — AR ~ 12.5

STERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



4. MR RECOGNITION: ASPECT RATIO THRESHOLD

__ length
AR = width
o In the local peak of |J| for each cluster we compute the Hessian matrix, with
its eigenvalues and eigevectors.

@ length and width extimation using the same method of
[Califano et al., 2020]:
> width: we look at the interpolated profile of J along the direction of strongest
variation (given by Hmatrix) — full width at half-maximum of |J].
> length: the maximal distance between two points belonging to the same
structure
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ALGORITHM WITH UNSUPERVISED ML: OUR RESULTS

e Comparison of the results for five times: t ~ 20[1/Q.] (beginning of the
simulation, no reconnections, PHASE I), t ~ 230[1/Q], t ~ 247[1/Q.],
t ~ 282[1/€] (three central times, with current sheets well developed,
PHASE Il), t ~ 494[1/Q] (fully developed turbulence, PHASE III).

|)|, =495

number of reconnection sites among sites selected
number of sites selected
number of non-reconnections among sites excluded
number of sites excluded

@ Precision =

@ nMR-precision =

USING CLUSTERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



ALGORITHM WITH UNSUPERVISED ML: OUR RESULTS
Method: kmeans + DBscan + threshold over AR

Tempo [1/Q] 20 230 247 282 494 | Mean (3t) Mean (4t)
N. structures 35 29 19 24 32
N. structures AR > 10 0 20 17 22 30
AR>125 | 0 18 17 21 30
AR > 20 0 15 17 20 23
AR > 30 0 14 13 14 18
AR > 50 0 8 10 13 9
AR > 70 0 6 9 12 7
precision AR > 10 - 06 082 064 0.4 0.69 0.61
AR>125 | - 067 082 067 04 0.72 0.64
AR > 20 - 073 08 0.7 0.39 0.75 0.66
AR > 30 - 079 085 0.79 0.39 0.81 0.70
AR > 50 - 1 1 0.77 0.33 0.92 0.77
AR > 70 - 1 1 0.75 0.43 0.92 0.79
nMR-precision AR < 10 1 1 1 1 1 1 1
AR < 125 1 1 1 1 1 1 1
AR < 20 1 093 1 1 0.67 0.98 0.9
AR < 30 1 093 05 0.7 0.64 0.71 0.69
AR < 50 1 081 055 0.64 0.61 0.67 0.65
AR <70 1 074 05 058 0.64 0.61 0.61

TABLE: Number of structures found, precision and nMR-precision for AML, for different
AR threshold (from 10 to 70). The results are shown for five different times.
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ALGORITHM WITH UNSUPERVISED ML: COMPARISON
WITH TWO SIMPLIFIED METHODS A1l AND A2

Al A2
| |

select simulation] | |
ime o1
| THRESHOLD ON J THRESHOLD ON ]

regions which others regions which others
overcome the overcome the
threshold on J threshold on J
stop | stop
for each for each
structure structure

cluster with other clusters
<J> maximum

does it overcome
the AR threshold?

el. vorticity AND a
peak of Edec?,

stop |__ _|
No Yes
for each |
structure
stop
does it overcome
does it overcome the AR threshold?,
the AR threshold? ’_ —‘
r —‘ No Yes
No Yes |
| | .

EXCLUDED SELECTED
[STRUCTURE] [STRUCTURE

EXCLUDED SELECTED
STRUCTURE] [STRUCTURE




ALGORITHM WITH UNSUPERVISED ML: OUR RESULTS

Precision and nMR-precision, comparison among AML, Al and A2

Mean over phase II Mean over phase II and I1I
1.0 1.0 precision AML
-~ precision AL
precision A2
\ —— nMR-precision AML
" 09 e
08 S 0.8
o+ precision A2
0.7 07
0.6 06
0.5
0.5
20 40 60 20 40 60

AR threshold AR threshold




CONCLUSIONS

development and test of a method to automatically find magnetic
reconnection in 2D simulations of plasma turbulence. The AML method uses
unsupervised machine learning and a threshold on the aspect ratio of the
structures

AML method performs better than simplified A1 and A2 methods that don't
use machine learning but only thresholds on important physical quantities

we found optimal aspect ratio threshold for which precision and
nMR-precision ~ 80%

aspect ratio turns out to be an important parameter to select truly
reconnecting current sheets

STERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION
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BACKUP SLIDES: MAGNETIC RECONNECTION

N

Breaking of conservation theorems < non-ideal terms into Ohm'’s law

ERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



BACKUP SLIDES: MAGNETIC RECONNECTION

credits: https:
//www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere2-unlabeled.html

M. SISTI ET AL.


https://www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere2-unlabeled.html
https://www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere2-unlabeled.html

BACKUP SLIDES: MAGNETIC RECONNECTION

[ ———

credits: https:
//www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere2-unlabeled.html
https://svs.gsfc.nasa.gov/20310
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BACKUP SLIDES: CROSSIVALIDATION

K-fold CV

T
Fold 1 Training set m
Fold 3
Fold 4 IHEI
Folas W K-fold CV. The data is randomly

1. The data is randomly split into k equal-sized folds. "’":I'"t"t:e:' etq““:"' sized ff’t::'i;‘E““tf“'fdt:
2. Each fold is used as the test set once, where the rest used as the test set once, with the rest o the

of the data makes the training set. data used as the training set. The similarity of
3. For each fold, predictions are made on the test set. the predictions to the true values of the test set
4. The predictions are compared to the true values. is used to evaluate model performance.

FIGURE: from [Rhys, 2020]




BACKUP SLIDES: THE DEVIES-BOULDIN INDEX FOR K
TUNING

It calculates the ratio of the within-cluster variance ( “scatter”) to the separation
between clusters centroids.

(LN ([ 2y1/2

o Scatter, = (5~ ;& (xi — ck)?) /
o Separation; | = ||c; — ¢l[1)2

. _ Scattery+Scatter;
° ratioj, = Separation;
@ the ratio is calculated for all pairs of clusters, and for each cluster
@ Ry is the largest ratio between a cluster and the other clusters

_ 1 N
© DB = > 1Rk

MAGNETIC RECONNECTION DI



Backup SLIDES: K-MEANS (LLOYD’S ALGORITHM)

@ It randomly initializes
Initial centroids Iteration 1 Iteration 2

N k-centroid.
o Jo
L ° 0% « @ It calculates the
o o) o o . B
g L, ° © 2 2 Euclidean distance
3 o0 0®o & 3 between each case
oo and each centroid. A
Variable 1 Variable 1 Variable 1 case it's assigned to
Iteration 3 Iteration 4 Iteration 5 the cluster

represented by its
nearest centroid.

Variable 2
Variable 2
Variable 2

@ The centroids are
moved: they are
placed at the mean

Variable 1 Variable 1 Variable 1
of the cases of each
Five i i of k il In the top-left plot, three initial
centers are randomly generated in the feature space (crosses). Cases are assigned CI uster.
to the cluster of their nearest center. At each iteration, each center moves to the
mean of the cases in its cluster (indicated by arrows). e The process repeats

until no case change
cluster from one
iteration to another.

FIGURE: from [Rhys, 2020]




BACKUP SLIDES: DBSCAN

Is the selected case Are the reachable
a core point? cases core points?

@ It selects a case randomly

s from the data set.

© 1. Core points contain

2 minPts in their €.
@3
0 o LSarheof o @ It searches for other cases
reachable cases. A

Variable 2
Variable 2

T e ST Ve in a n-dimensional sphere
Stop when no more JHovetonen width radius e.
g “’;{,,m,;";é'sam.,":‘gj( @ If this case contains at least
5 3 minPts cases inside its
s s

@ P 2 IQ search radius it is marked as
7L a core point, else it moves

Variable 1 5. Cluster of Variable 1
connected cases
on.

The DBSCAN algorithm. A case is selected at random, and if

its epsilon radius (g) contains minPts cases, it is considered a core point. e Ea Ch case Wlth I nt he sea rch

Reachable cases of this core point are evaluated the same way until there

are no more reachable cases. This network of density-connected cases is . . . .
considered a cluster. Cases that are reachabie from core poits but are radius is checked to see if it
not themselves core points are border points. The algorithm moves on to . .

the next unvisited case. Cases that are neither core nor border points are IS a core pol nt.

labeled as noise.

FIGURE: from [Rhys, 2020] @ The process repeats.
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BACKUP SLIDES: SWEET-PARKER MODEL

264

Sketch of magnetic field geometry in Sweet-Parker reconnection. Oppositely directed magnetic fields are
brought together over a length 2L and reconnect in a diffusion layer of width 25.

FIGURE: from [Zweibel and Yamada, 2009]

Sweet-Parker model:
@ The outflow speed is the Alfvén speed

@ Mass conservation: vj,L = V6

@ The electric field is given by the resistive Ohm'’s law




BACKUP SLIDES: SIMPLIFIED METHOD, THRESHOLD OVER J

MASK + local maxima, t=247

300

250

200

ETIC RECONNECTION DETE



BACKUP SLIDES: ALGORITHM WITH UNSUPERVISED

ML, A COMPARISON WITH A SIMPLIFIED METHOD (2)

Method (2): multi-threshold (quantities: |J|, |Q¢|, electron decoupling) + DBscan
(minPts = 2)

Tempo [Q] 20 230 247 282 494 | over 3t over 5t
N. clusters (e = 10) 2 31 30 19
N. mr found (e =10) | O 14 17 14 45
precision (e = 10) 0 045 057 074 0.59
N. clusters (e = 30) 2 25 24 13
N. mr found (e =30) | 0 15 17 13 45
precision (e = 30) 0 06 071 0.85 0.72
N. clusters (e = 50) 2 23 21 12
N. mr found (e =50) | 0 15 16 10 41
precision (e = 50) 0 065 076 0.83 0.75
N. clusters (e = 70) 2 20 21 12
N. mr found (e=70) | 0 14 16 10 40
precision (e = 70) 0 07 076 083 0.76

Problems:
@ We cannot apply threshold over AR, thus it finds sites also for times at the
beginning of the simulation
@ We cannot increase € too much: lots of sites would be merged and we would loose
good sites

STERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



BACKUP SLIDES: SATELLITE MEASUREMENTS,
TRAJECTORY

Solar wind

Solar wind magnetic field

magnetic field

Aurora
g '_-\\

Solar 2 2 |/ =

wind e
b

Plasma
density




BACKUP SLIDES: MAGNETIC RECONNECTION
INSTABILITY

Conservation theorems:

Magnetic line reconnection ° A/fve'n theorem: dt fs(t) é‘ d§2 0
° anmiction theorem: if, for t =0,
B dl /\_B =_‘0, then
R di(dINB)=0, Vt
Hyphotesis: . .
Ideal Ohm's law: £+ 2GAB =0
or

E+iinB=1JANB-LVP,
Term which break the conservation

theorems if added to the Ohm’s law:
me dJ

ne? dt

o Electron inertia:

o Resistivity term: nf

USING CLUSTERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



BACKUP SLIDES: BRIEF INTRODUCTION TO THE
TOPIC: TURBULENCE

~ 100,000 km

©)©)

= NS

@ Reconnection (as an intermittency effect) can be a dissipation mechanism

ETECTION



BACKUP SLIDES: SCALES

Magnetic reconnection
acts impacts

CLUSTER
resolution

/

L ' i I L >

electron electron ion skin depth Kelvin-Helmholtz scale Global scale .
gyroradius  skin depth ~10 Km ~1000-10000 Km spatial scale
~100 m = aKm ion gyroradius
L P

Turbulence range

MMs
resolution




BACKUP SLIDES: HYBRID VLASOV-MAXWELL CODE

Normalized equations used:
@ Vlasov equation for the ion distribution function:

of of
StV VI (E+VAB) o =

0 (4)
@ The Ohm'’s law for the electric field:
d2 1
E—d?V2E = —(u/\B)+1(J/\B)+1de2V~I'I—EVP5+—EV~[uJ+Ju]—fd§V~(£) (5)
n n n n n n

the ion density n, the ion bulk velocity u and the ion pressure tensor [1 are
obtained as the moments of the ion distribution function f.

o Maxwell's equations

USTERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



BACKUP SLIDES: PROXIES TO IDENTIFY
RECONNECTING CURRENT SHEETS

The coupling between an electrically conducting fluid and the magnetic field
immersed in the fluid is described by the generalized Ohm's law

E+%/\B:R (6)

where R comprises the different so-called nonideal effects of the plasma,
dissipative or nondissipative.

Faraday's law reads:

0B

— =-VAE 7

B @)
Only E = Ry can cause reconnection, since the perpendicular component R can
always be incorporated in the general velocity u by rewriting R; = u’ A B, where

u=v-—u.

USING CLUSTERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION



BACKUP SLIDES: PROXIES TO IDENTIFY
RECONNECTING CURRENT SHEETS

e Poynting equation (energy conservation for the EM-fields)
2
OB V. (£EAB))=-E-J

o Conservation equation for the total energy (no viscosity, no diffusion, no heat
flux):

2(u+28v)=-V -[(u+p+Lv?]+J-E
° —>%(SB—;—FU—ng):—V-[ﬁEAB+(u+p)v+§v2v]
with u internal energy.

Thus J - E gives the energy conversion. J

ERING TECHNIQUES FOR MAGNETIC RECONNECTION DETECTION
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