User and temperature variation on CO₂ and CH₄ production from fire-degraded tropical peat

EĞ

Hasan Akhtar^{1,2,3*}, Massimo Lupascu^{1,4}, Rahayu S. Sukri⁵ (BG3.24: Peatlands under pressure)

Background	Approach	Findings
 Tropical peatlands degraded mainly by drainage and fire 	 Peat samples – fire-degraded tropical peatland, Brunei Darussalam (4°28'40" N, 114°18'19" E) 	• Ferns and sedges secrete root exudates compounds with sugar: organic acid ratio of 2:1
 Extent increased to almost 10% (~1.42 Mha) of the total peatland area in SE Asia Altered microtopography may regulate water-saturation conditions (oxic and anoxic) Higher temperature enhances peat oxidative decomposition leading to subsidence and flooding Change in vegetation can affect quality and quantity of root exudates, hence affecting CO₂ and CH₄ production and emissions 	 Root exudates compounds (REC) – sedge and fern species (targeted analysis for sugars and organic acids) Incubation experiment set up – ✓ 13 g peat incubated under three factorial design using 1 L mason jars ✓ Microtopography creating water-saturation (mesic, flooded oxic with DI water, anoxic with DI water + bubbled with N₂) ✓ Root exudate analogues in form of labile C (R-0.1, R-0.2, R3-0.3 g C/g of peat/day) ✓ Temperature variation (26°C – night time; 30°C day time) Measurements – CO₂/CH₄ flux measured at time 0, 6, 12, 24, 72, 120 hours after addition of REC solution (GasScouter, Picarro Inc) 	 Water-saturation conditions, root exudates analogues, and temperature significantly (p<0.05) affected CO₂ and CH₄ production Mesic treatments acted as source of CO₂ (230.4 ± 29 μgCO₂ g⁻¹ hr⁻¹) whereas anoxic treatments acted as source of CH₄ (591.9 ± 112.1 ngCH₄ g⁻¹ hr⁻¹) Anoxic treatments showed higher temperature sensitivity (Q₁₀) for CH₄ (1.56 ± 0.35) whereas mesic showed higher sensitivity for CO₂ (1.21 ± 0.28) Prolonged dry conditions associated with the El-Niño may exacerbate fire re-occurrence and expand the extent of degraded tropical peatland
Degraded tropical peatland	Condition Mason jar setup Night (26°C) Day (30°C) Root exudates compounds	$\begin{bmatrix} 500 \\ a \end{bmatrix} \xrightarrow{500} b = \text{Elocated axis} \begin{bmatrix} 500 \\ c \end{bmatrix} \xrightarrow{500}26^{\circ} C \end{bmatrix}$
Ferns Fe	Mesic (Raised hummock) \bigcirc <t< td=""><td>$\begin{array}{c} 400 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</td></t<>	$\begin{array}{c} 400 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
and peat C		ntal Research Institute, Singapore; ⁵ Institute for Biodiversity and Environmental Research, Universiti Brunei