

A conceptual model for the estimation of flood damage to power grids

Panagiotis Asaridis, Daniela Molinari and Francesco Ballio Politecnico di Milano, Department of Civil and Environmental Engineering, Milan, Italy (panagiotis.asaridis@polimi.it)

vEGU21: Gather Online | 19–30 April 2021

Literature review

Why floods?

- Floods are the among the most frequent and destructive natural hazards worldwide (UNDRR, 2019).
- Increase in the frequency and intensity of flood events due to climate change and anthropogenic processes (Hall et al., 2014).

Why infrastructures?

- Infrastructures can suffer high economic losses in case of flood events as compared to other sectors (Thieken et al., 2016).
- However, flood damage modelling to infrastructures is still a challenging task (Jongman et al., 2012) due to:
 - the complexity of networks and their interconnections
 - the lack of knowledge and data to investigate damage mechanisms and to validate and calibrate damage models

Why power grids?

- Power grids constitute the backbone of modern societies and economies.
- Floods affect the power supply regularly and result in major power outages.
- Modeling and mapping flood risk in power grids enables:
 - the mitigation of flood damage
 - the reduction of the economic losses

Research aim and objectives

The conceptual model has been conceived to:

- handle the complexity of damage mechanisms
- identify the full range of cascading effects
- adopt an interdisciplinary and multi-scale evaluation approach

The conceptual model highlights:

- the different components of flood damage for which a model is required (i.e., direct, indirect, and systemic)
- the interconnections among power grids and residential, commercial, industrial sector and other infrastructures
- the hazard, exposure, and vulnerability parameters on which damage depend on
- the temporal and spatial scales of analysis

The framework of the assessment is divided into:

- physical model flood damage in quantitative terms (e.g., number of substations affected, duration of power outage, etc.)
- economic model → economic losses in monetary values (e.g., wages, revenues)

~___

		HAZARD PARAMETERS	EXPOSURE P/	ARAMETERS	VULNERABILITY PARAM	ETERS
Direct damage	HYSICAL MODEL					Short-term Micro-scale
Indirect damage						Medium-term Meso-scale to macro-scale
Systemic damage				,	•	Long-term Meso-scale to macro-scale
E	CONOMIC MODEL	}				
Power grid losses						Society losses

Conceptual model 1. Direct damage

Component	Damage mechanisms	References	Hazard	<u>Evenesure</u>	Vulnerability	Scale of analysis	
component				Exposure		Spatial	Temporal
Lines	Damage to buried ends of overhead lines	FEMA, 2009	Inundation depth	Carrying capacity, line length	Installation height	Micro	Short-term
Towers	Foundation structural damage, subversion, displacement	Powerlink Queensland, 2011; Booth et al. 2017	Inundation depth, flow velocity, duration of inundation, debris/sediments	Carrying capacity	Foundation depth, foundation type, foundation material, construction date	Micro	Short-term
Substations	HVAC, AC and DC system loss, control house water intrusion, switchyard washing away, fire and explosion	Ward, 2013; Boggess et al., 2014; Karagiannis et al., 2017; New York Power Authority et al., 2017	Inundation depth, debris/sediments	Voltage level, substation area	Installation height, levee protection	Micro	Short-term
Power plants	Backup generators damage, destruction of cooling towers, facilities water intrusion, foundation structural damage	Srinivasan and Rethinaraj, 2013; McCall et al., 2016; New York Power Authority et al., 2017	Inundation depth, debris/sediments	Installed capacity, power plant area	Installation height, levee protection	Micro	Short-term

Conceptual model 2. Indirect damage

Notwork	Dowooo woohowiawa	Deferences	Llocord	Freesure	Exposure Vulnerability – S	Scale of analysis		
Network	Damage mechanisms	References	Hazalu	exposure		Spatial	Temporal	
Transmission	Power outage	Bollinger and Dijkema 2016; Espinoza et al., 2016; Murdock et al., 2018; Karagiannis et al., 2019;	Duration of inundation	Electricity price, service area, generator rental price	Resistant capacity, absorptive capacity, restorative capacity	Meso to macro	Medium-term	
Distribution	Power outage	Vasenev et al., 2016; Bragatto et al., 2019; Sanchez-Munoz et al., 2020	Duration of inundation	Electricity price, service area, generator rental price	Resistant capacity, absorptive capacity, restorative capacity	Meso	Medium-term	

Conceptual model 3. Systemic damage

						Scale o	f analysis
Sector	Damage mechanisms	References	Hazard	Exposure	Vulnerability	Spatial	Temporal
Residential	Household chores loss, social and leisure activity loss, work activity inaccessibility, food spoilage, cooling and heating loss, educational outcome worsen	Pasha and Saleem, 2013; Lenz et al., 2017	Duration of inundation, frequency of inundation, timing	Gross economic measure, g service area, generator rental price	Type of customer, size of customer	Meso to macro	Long-term
Commercial	Financial transaction interruption, computer service loss, product spoilage	Corwin and Miles., 1978; Kile et al., 2005	Duration of inundation, frequency of inundation, timing	Gross economic measure, g service area, generator rental price	Type of customer, size of customer	Meso to macro	Long-term
Industrial	Manufacturing shutdown, product spoilage, plant equipment damage	Corwin and Miles., 1978; Rentschler et al., 2019	Duration of inundation, frequency of inundation, timing	Gross economic measure, g service area, generator rental price	Type of customer, size of customer	Meso to macro	Long-term

Conceptual model 3. Systemic damage

Infractructura	Damago mochanisms	Poforoncos	Hazard	Evenosuro	Vulnorability	Scale of analysis	
lillastiucture	Damage mechanisms	References	nazaru	Exposure	vullerability	Spatial	Temporal
Water supply	Water shortage, contamination, boil-water advisory	Holden et al., 2013; Ebacher et al., 2010; Kile et al., 2005	Duration of inundation, frequency of inundation, timing	Gross economic measure, service area, generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term
Telecommunication	Network outage	Kile et al., 2005	Duration of inundation, frequency of inundation, timing	Gross economic measure, service area generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term
Transportation	Traffic congestion, signal malfunction		Duration of inundation, frequency of inundation, timing	Gross economic measure, service area generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term
Wastewater treatment	Contamination	Corwin and Miles., 1978; Kile e al., 2005; Beatty et al., 2006	t Duration of inundation, frequency of inundation, timing	Gross economic measure, service area generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term
Health care	Non-functioning of health care activities, increase of emergency medical services calls, increase of emergency departments visits, laboratory specimen and vaccine spoilage, loss of syndromic surveillance data	Corwin and Miles., 1978; Greenwald et al., 2004; Prezant et al., 2005; Rand et al., 2005; Beatty et al., 2006; Freese et al., 2006; Klinger et al. 2014	Duration of inundation, frequency of t inundation, timing	Gross economic measure, service area generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term
Emergency service	Response delays	Corwin and Miles., 1978; Karagiannis et al., 2017	Duration of inundation, frequency of inundation, timing	Gross economic measure, service area generator rental price	Resistant capacity, absorptive capacity, restorative capacity, interconnections	Meso to macro	Long-term

Conceptual model 4. Economic losses

Cost	Economic losses	References	Recipient
Restoration	Repair and/or replacement of power grid inundated facilities and components	Karagiannis et al., 2017	Power grid
Loss of service	Revenue loss from customers not served, compensation to customers not served, renting auxiliary power supply appliances, hiring temporary workers	Wacker and Billinton, 1989; Karagiannis et al., 2019; Obolensky et al., 2019; Sanchez-Munoz et al., 2020	Power grid
Economic activity	Reduction in capacity utilization rates, sales losses, additional costs of self- generating power	Farquharson et al., 2018; Koks et al., 2019; Rentschler et al., 2019	Society
Utility	Revenue loss, overtime payments, additional costs of self-generating powe	r Corwin and Miles, 1978	Society

Discussion

• Ongoing process:

- Investigation of the existing methodologies and modelling approaches for the estimation of the different damage components
- Identification of the key challenges and limitations

• Research priorities:

- Evaluation of the coherence between modelling approaches
- Validation of the model in real case study

THANK YOU!

I will be really happy to answer your questions: panagiotis.asaridis@polimi.it

