Nonlocal soil moisture effects during European heatwaves

Ronja Bohnenblust¹, Anna L. Merrifield¹, Sebastian Sippel¹, Isla R. Simpson², Karen A. McKinnon³, Erich M. Fischer¹, Clara Deser², and Reto Knutti¹

¹Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland ²Climate and Global Dynamics Laboratory, National Centre for Atmospheric and Research, Boulder, CO, USA ³Institute for Environment and Sustainability, Department of Statistics, University of California, Los Angeles, CA, USA

EGU General Assembly 2021, CL4.17 Land-atmosphere interactions and climate extremes, 27.04.2021

(EGU General Assembly 2021

Study overview

Background

> Nonlocal soil moisture effect on temperature (Miralles et al., 2018)

Research goal

> What amplifies a persistent European heatwave?

Data and Methods

- Dataset: Described in Merrifield et al. (2019)
- > Heatwave: Persistent European heatwave occurring in a CESM1 preindustrial control run
- Ensemble: 22 ensemble members with different land surface conditions and atmosphere nudged towards the heatwave. Only upper atmosphere constrained (above 322hPa) Atmosphere can be modified by the land surface.

Baseline heatwave

Deviations from the baseline heatwave

Central European temperature evolution

- Top left: Temperature [°C] root mean squared error (RMSE) between the ensemble members and the baseline heatwave at each grid point averaged over Europe.
- Heatwave initiation phase (June 13) and heatwave decay phase (August 11) stand out.
- Storylines: How and why do the ensemble members evolve differently during these two periods?

Case study: Heatwave initiation phase

0 [Ĵ

-5

[hPa]

 $[W/m^2]$

50

[kg/m²]

-50

Weak High composite Strong High composite

SLP anomaly/850hPa winds, 12. June

Sensible heat flux anomaly, 11. June

Soil moisture anomaly, 10. June

Two composites

- Weak High composite: Mean of 4 ensemble members characterized by a weak high pressure system over Northeastern Europe.
- Strong High composite: Mean of 4 ensemble members characterized by a strong high pressure system over Northeastern Europe.

Temperature $oldsymbol{ u}$	Temperature 个
Northwesterly winds	Southwesterly winds
SLP ↓	SLP 个
Sensible heat flux $oldsymbol{\psi}$	Sensible heat flux 个
Wetter soils	Drier soils

Case study: Heatwave decay phase

10

0

[°C]

 $[W/m^2]$

50

[kg/m²]

Northerly winds composite Southerly winds composite

SLP anomaly/850hPa winds, 10. August

Sensible heat flux anomaly, 9. August

Soil moisture anomaly, 8. August

Two composites

- Northerly winds composite: Mean of 4 ensemble members characterized by northerly winds over France.
- Southerly winds composite: Mean of 4 ensemble members characterized by southerly winds over France associated with a cyclone off the coast of France.

Temperature $oldsymbol{ u}$	Temperature 个
Northerly winds	Southerly winds
SLP ↑	SLP ↓
Sensible heat flux $ igsir $	Sensible heat flux 个
Wetter soils	Drier soils

Similar patterns in observations

Heawave decay case study: Similar situations

- Similar atmospheric situations in ERA5-Land as in the model
- Consistent relationship between temperature and pressure visible
- Land surface influence difficult to establish without the constrained circulation ensemble

- > Land surface «anchoring» effect on the high pressure system
- > Amplification/damping of low pressure system bringing southerly winds
- Consistent analogues in observations

Merrifield, A. L., Simpson, I. R., McKinnon, K. A., Sippel, S., Xie, S.-P., & Deser, C. (2019). Local and nonlocal land surface influence in european heatwave initial condition ensembles. *Geophysical Research Letters*, 46, 14082–14092. <u>https://doi.org/10.1029/2019GL083945</u>

Miralles, D., Gentine, P., Seneviratne, S., Teuling, A. (2018). Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Annals of the New York Academy of Sciences. 1436. <u>https://doi.org/10.1111/nyas.13912</u>

Muñoz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 25.04.2021). <u>https://doi.org/10.24381/cds.e2161bac</u>

Supplementary Slides

Regions

Nudging time

(a) Temperature spread (std) across CCE_{full} ensemble members with nuding starting in May or in June

(b) Temperature spread (std) across CCE_{top} ensemble members with nuding starting in June

CCE: Constrained Circulation Ensemble.

CCE_{top}: Nudging only of top atmosphere (above 322hPa).

CCE_{full}: Nudging of the full atmosphere (above 998hPa).

(a) Central European (CEU) average temperature ensemble spread, obtained by calculating the standard deviation (std) of temperature across ensemble members in the $CCE_{full-May}$ ensemble with nudging starting on May 1 (green) and the $CCE_{full-June}$ ensemble with nudging starting on June 1 (blue). (b) CEU average temperature ensemble spread in the CCE_{top} with nudging starting on June 1 (blue).