Large deltas versus small deltas: Two different beasts

Jaia Syvitski CSDMS/INSTAAR, Univ. Colorado, Boulder

With special thanks to Yoshiki Saito, Charles Vörösmarty, & Liviu Giosan

Smaller sand & gravel deltas entering deepwater fjords create classic shoreline foresets

Large silt and clay deltas create both shoreline and subaqueous-delta clinoforms

Deltas are conditioned by drainage area, river discharge, sediment load, ocean energy, and human interaction.

Equilibrium delta concepts typically include one form of sediment input & two forms of dispersal

Syvitski, 2008, Sust. Sci

Brakenridge et al, 2017, ESR

Irrawaddy delta, Myanmar, Cyclone Nargis flooding (2008 in pink), Winter hydrography (2002, dark blue), Monsoon flooding (2013 med. blue; 2014 light blue).

marine process that add sediment to a delta: storm surges, tidal pumping, alongshore transport

marine process that remove sediment to a delta: tidal flat erosion, tidal channel widening, sediment failures, hypopycnal plumes, hyperpycnal flows, wave-assisted erosion, delta drowning (relative sea level rise)

BEDROCK

$$\partial \eta / \partial xy = (A - Er) - \Delta E - C_n - C_A \pm M$$

Late Holocene: $1.9 = 5 - 0.1 - 2 - 0 - 1$
Anthropocene: $-13 = 1 - 4 - 2 - 7 - 1$ in mm/y

Small marine deltas: small reservoirs trap less sediment allowing a delta to better keep up with sea level rise; their coarser-grained sediment compacts less; less likely to have human induced-subsidence (with exception: ex. Tokyo, Osaka, Nagoya, Jakarta); do not have a geological mass large enough to induce isostatic subsidence

Large marine deltas: Numerous and larger dams trap more sediment; sediment deficit is likely; finergrained sediment compact more; more likely to have accelerated compaction (subsidence); geological mass likely large enough to induce its own isostatic subsidence

Sediment Needed (1m/100y) in Mt

$$\partial \eta / \partial xy = (\mathbf{A} - \mathbf{E}\mathbf{r}) - \Delta \mathbf{E} - \mathbf{C}_n - \mathbf{C}_A \pm \mathbf{M}$$

Large Deltas: $-12 = \mathbf{2} - \mathbf{4} - \mathbf{2} - \mathbf{7} - \mathbf{1}$
Small Deltas: $-3 = \mathbf{4} - \mathbf{4} - \mathbf{1} - \mathbf{2} - \mathbf{0}$ in mm/y

Maximum Sediment Available in Mt/100y

Small delta (marine) characteristics

Distributary channel formation (years) Avulsions (decades) Valley flooding (decades) Topset: Sand & Gravel Delta gradient (Qs, tidal range) Number of channels (fluvial dynamics) Limited Human Footprint

(bridges for many but for high population coasts the entire delta is occupied & engineered)

Large delta (marine) characteristics

Distributary channels (decades) Avulsions (century) Overbank flooding or storm surge (years) Topset: Silt and Clay Delta gradient (Qs, shelf depth) Number of channels (Q_{mx}/(Ti²+Wa²) Enormous Human Footprint

- (1) engineered changes to distributary channels;
 - (2) accelerated subsidence;
 - (3) engineered coastal barriers;
 - (4) land reclamation & polder creation;
 - (5) Megacities; 6) Agri- & Aquaculture

