The importance of satellite soil moisture assimilation for low-level jet forecasts

Craig R. Ferguson, Shubhi Agrawal, and Lance Bosart

Atmospheric Sciences Research Center, University at Albany, NY, USA

The importance of satellite soil moisture assimilation for low-level jet forecasts

Craig R. Ferguson, Shubhi Agrawal, and Lance Bosart

Atmospheric Sciences Research Center, University at Albany, NY, USA

RESULTS

Weakly coupled SMAP DA can result in up to 60 W m⁻² change in SH and LH, 240 m in PBLh, and 4 m s⁻¹ in 850 hPa wind speed. Generally, DA decreases SM, increases winds, and reduces WRF's negative wind bias. The greatest impact on winds is observed at the jet core and exit regions; uncoupled jets tend to be extended and coupled jets shortened.

For Full Details See: Ferguson et al. (2020). Assimilation of Satellite-Derived Soil Moisture for

Improved Forecasts of the Great Plains Low-Level Jet, Monthly Weather Review, 148(11), 4607-4627.

-0.1 -0.05 -0.03 -0.02 0 0.02 0.03 0.05 0.07 0.09 m s

^{0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0} m s