What drives the growth of earthquake clusters?

Tomáš Fischer¹,

Sebastian Hainzl², Josef Vlček¹, Ali Salama¹

(1) Charles University, Faculty of Science, Prague, Czechia(2) Helmholtz Centre GFZ Potsdam, Germany

- Representing and understanding migration of swarms and induced seismicity
- External / Internal loading X(t) or X(N) plots ?
- Observations
- Model
- Application to seismic swarm data
- Summary

Based on Fischer T. J. and Hainzl S., 2021. The growth of earthquake clusters, Front. Earth Sci. 9:638336. doi: 10.3389/feart.2021.638336

Understanding hypocenter migration

Hypocentre migration – coordinate-time plot

Function of time: the migration often appears discontinuous

Function of event index: the migration becomes more continuous

Comparison of coordinate-time and coordinate-event index plot

Is constant in coordinate-event index plot -

Loading of seismic front advance (migration)

External (aseismic) loading

Seismicity growth is controlled by the time dependent external process (injection) modelled by

- Pore pressure diffusion (Shapiro et al. 1997)
- Hydraulic fracture growth (Fischer, Hainzl and Dahm, 2009)

=> Seismicity is time dependent

-> coordinate-time X(t) plots

Internal (seismic) loading

Seismicity growth is controlled by earthquake ruptures themselves

- the rupture allows for nucleation of adjacent new rupture
- Seismic rupture is first, fluid flow follows (Yamashita 1999)

=>

No time dependence of seismicity

The process itself measures the 'time' Event occurrence = time tick "NATURAL TIME"

Observations

Linear clusters - streaks

Linear clusters - streaks

Linear clusters - streaks

vEGU 2021, What drives the growth of earthquake clusters

In many cases, interrupted growth in time becomes continuous (and linear) in event index

What is behind?

Hypocentre migration model – event-index dependent migration is a result earthquake occurrence

- Every rupture facilitates nucleation of further ruptures (new rupture occurs at the edge of the previous one, facilitated by fluid inflow into the previous rupture)
- 2D two models:
 - channel model C
 - sector model S
- speed

$$x(N) = \begin{cases} \frac{\langle A \rangle}{W} N = \nu N \\ \\ \sqrt{\frac{360}{\pi \theta} \langle A \rangle} \sqrt{N} = \sqrt{DN} \end{cases}$$

model C

model S

Hypocenter migration model – growth speed (A)

Observed growth of ruptured area

Measure the convex area covered by earthquake ruptures

$$A = \langle A \rangle \cdot N$$

Rupture area predicted by the rupture model for

- Each event magnitude *m*

or

- The mean effective magnitude <*M*_{eff}> of the cluster

$$M_{0} = f\Delta\sigma A^{3/2} \quad \log M_{0} = c + dm$$
$$\langle A \rangle = \left(\frac{10^{c+dm}}{f\Delta\sigma}\right)^{2/3}$$

 $\Delta\sigma$ - static stress drop

Moment magnitude: c = 9.1, d = 1.5

Brune circular model: $f = (7/16) \pi^{3/2}$

Model-based prediction of dependence of $\langle A \rangle$ and $\langle M_{eff} \rangle$

 Power-law increase of predicted <A> with M

 $A \sim M^{(2/3)d},$

where d shows the moment – magnitude scaling $\log M_0 = c + d M$

Decrease of predicted
 <A> with effective stress
 drop

Application to data

Application to data - Observation of $\langle A \rangle$ and $\langle M_{eff} \rangle$

Method:

<A> is measured as convex area per event of the
growing cluster (convhull) in a sequence of
windows

 $< M_{eff} >$ is derived from the mean seismic moment of a growing cluster

20

Test on the 2008 West-Bohemia swarm - data

(A) growth for cluster #1 of the 2008 West-Bohemia swarm

-6

(A) growth for cluster #2 of the 2008 West-Bohemia swarm

 $\langle A \rangle = 2870 \text{ m}^2/\text{event}$ W ~ 630 m $v = \langle A \rangle / W = 4.6 \text{ m/event}$ (720 m/day) $\langle M_{eff} \rangle = 1.4$

Comparison of measured and theoretical (A) - WB 2008 swarm

 $\langle A \rangle$ scales with $\langle M_{eff} \rangle$ with effective stress drop ranging from 0.1 to 1 MPa

Other swarms - measured and theoretical (A)

West Bohemia 2011 swarm

hypoDD2011.reloc_events_3_brushed.mat hypoDD2000.reloc_events_12.mat -8.6 -9 Along dip [km] Along dip [km] -8 Along dip [km] -6--8:5. -9.5 -9 -10 -10 -9.4 2 -3 -2 -1 0 1 Along strike [km] -1.5 -0.5 -2 -1 0.2 0.4 0.6 0 2 -0.4 -0.2 0.8 0 Along strike [km] Along strike [km] Along strike [km] <Meff>: 0.722, <A>: 2.39e+03 ML range: 0 - 2.4 <Meff>: 1.67, <A>: 2.54e+03 ML range: 0.1 - 3.6 data +data 1.5 10⁵ Ο last data 0 10⁵ last data 10 kPa 10 kPa <A> N ₹¥> 0.1 MPa Area per event <A> 0.1 MPa 1 MPa 1 MPa Area per event 10^{4} 10 MPa 10^{4} 10 MPa Ш Total area A <u>_</u>++++ ⊕# 10^{3} 0.5 10³ 10^{2} 10^{2} 0 1.2 100 200 300 400 1.4 1.6 1.8 200 400 600 0.5 0.6 0.8 0 0.7 <Meff> # events # events <Meff>

West Bohemia 2000 swarm

29.4.2021

-7

-9.5

-10

N ^V 4> 0.8

II 0.6

Total area A : 700 Total area A

0

0

-2

-1

Along dip [km] 8- -8-8- -

Other swarms - measured and theoretical (A)

Long Valley Caldera 2014 swarm

29.4.2021

All swarms - measured and theoretical (A)

Measurements of selected clusters of swarms in West-Bohemia and California

 $\langle A \rangle$ and $\langle M_{eff} \rangle$ scale with effective stress drops ranging from

- 0.1 to 5 MPa West Bohemia
- 2 to 10 MPa California

Reasonable values of effective stress drop show that the ruptures are adjacent, and swarm is driven by ruptures formation followed by fluid flow

Comparison of effective stress drop derived from average rupture area and the cluster growth velocity

Varying growth velocities of clusters

Measurements of selected clusters of swarms in West-Bohemia and California

No relation between growth velocity in time domain and stress drop derived in event-index domain

Summary

Hypocenter migration plots shows envelope growth and fine embedded structures growing (linearly) with time

The growth patterns are often interrupted in coordinate-time plots and become continuous in coordinate-event index plots

Two types of event triggering considered

external (p-diffusion) and internal (rupture opening)

- *p*-diffusion: X(t) continuous; X(N) continuous
- rupture opening: X(t) interrupted; X(N) continuous

=> discontinuous X(t) plot indicates that the process can be internally driven (self-organized)

Continuous plots (X(t) or X(N)) are linear or square-root related to the type of growth (channel or sector)

Summary

Model: event rupture opens path for fluids; new rupture forms at the edge of the previous one

Method: We measure the speed of growth by the total area of the cluster $A = \langle A \rangle$. *N*, where the average area per event $\langle A \rangle$ should scale with magnitude

If $\langle A \rangle$ does not grow with M => external triggering??

Application to the swarms shows that $\langle A \rangle$ grows with *M*, related stress drop ranges from 0.1 to 10 MPa

=> the swarm earthquakes appear to be driven internally with fluid flow following the rupture opening