Arctic Ocean tidal regime change across the Bolling-Allerod onset
EGU 2021

Jesse Velay-Vitow and W. Richard Peltier

March 24, 2021

University of Toronto
Department of Physics
- Amundsen Gulf and McClure ice streams have retrograde bathymetry
- Lithic fragments found in Beaufort Sea [1]
- Possible second example of tidally triggered marine ice stream instability other than Heinrich Events [2]
Later, weaker layer associated with YD
Earlier, stronger layer occurring at approx 14.6 ka
Potentially deposited during BA deglaciation of Amundsen Gulf
• Previously known that M2 Tide in Arctic Ocean is large.\[3\]

• Coastal deglaciations may cause tidal hot spots
• Bolling Allerod warming caused by resuscitation of the Atlantic Meridional Overturning Circulation after H1
• This warming could have begun the deglaciation of Arctic ice streams
• The melting of the Southern Laurentide and Barents sea ice sheet produces MWP1a
• MWP1a associated RSL rise, in combination with the altered Arctic coast line kills the M2 tidal amplitude
• Sea rise occurs unevenly over surface of the Earth
• RSL drop immediately offboard Laurentide due to loss of gravitational attraction from ice sheet
• Compared predicted RSL change in ICE-7G NA (VM7)[4, 5] to observations at Tahiti, Sunda Shelf and Barbados

• Isolated contributions from individual ice sheets, as well as Glacial Isostatic rebound

• Laurentide Ice sheet contribution larger at Sunda Shelf and Tahiti than at Barbados

• No need for increased Antarctic contribution
• We assumed an onset time of 14.6 kya[1]
• 300-500 year duration
• Removed the ice from ICE-7G_NA (VM7)[4, 5] in 3-5 equal 100 year steps
• Ran simulations with either and both straits assumed to deglaciate.
- Globally Unstructured Grids
- Discontinuous Galerkin Method
- Finite element method over piece-wise continuous trial functions
- Highly parallel
- Flux form of SWT equations:
 \[\partial_t Q + \nabla \cdot F(Q) = S(Q), \quad Q(x, y, t) = [\phi, \phi u]^T \]

- Forcing:
 \[
 F^x = \begin{bmatrix}
 \phi u \\
 \phi u^2 + \frac{1}{2} \phi^2 \\
 \phi uv \\
 \phi uw
 \end{bmatrix},
 F^y = \begin{bmatrix}
 \phi v \\
 \phi uy \\
 \phi v^2 + \frac{1}{2} \phi^2 \\
 \phi vw
 \end{bmatrix},
 F^z = \begin{bmatrix}
 \phi w \\
 \phi uw \\
 \phi vw \\
 \phi w^2 + \frac{1}{2} \phi^2
 \end{bmatrix}
 \]

- Source:
 \[
 S = \begin{bmatrix}
 0, -f \hat{e}_g \times (\phi u) + \phi \nabla (\phi_{eq} + \phi_{sal} - \phi_s) - \frac{g}{\rho} (D_{BL} + D_{IT})
 \end{bmatrix}^T
 \]

- General Galerkin approach taken, but solution allowed to be discontinuous at boundaries through Lax-Friedichs or Rusanov Flux.
• Solved the 2D spherical shallow water equations
• Self attraction and loading approximated as 0.085 g
• Boundary Layer dissipation parameterized as[6]
 \[D_{BL} = \rho C_D |u| \], \quad C_D = 0.0025
• Internal tidal dissipation is modelled as[7]
 \[D_{IT} = \frac{\rho \bar{N}^2 h_s}{3\omega} (u \cdot \nabla h_s) \cdot \left\{ \begin{array}{ll}
1, & \text{for } |f| < \omega \\
0, & \text{for } |f| > \omega
\end{array} \right. \]
• Same model as that used in Salehipour \textit{et al} (2013)[8]
• M2 amplitude of 2-3 meters along most of Arctic coast
• As high as 4-5 meters in certain locations
• Amundsen Gulf has 3 meter tides prior to deglaciation
• McClure Strait doesn’t have as high amplitude tides
• Continuous tidal forcing of Amundsen Gulf
• 9 meter M2 tidal amplitude initially
• Decreases to approximately a meter by 14.1 ka
• McClure Strait experiences 5 meter maximum tide
Increased Tidal Amplitude

Introduction

Model

Results

Conclusion

Results
• Tidally Triggered Marine Ice sheet instability strongly implicated in Heinrich Events
• The Arctic Ocean was mega-tidal prior to Younger Dryas time
• Amundsen Gulf may be a second example of tidally triggered marine ice stream instability
• McClure Strait may also be amenable to tidally triggered instability
• Tidal triggering of ice streams may be a more important process than previously imagined
• Two ice streams have been identified, but are there more?
• Canadian Arctic Archipelago likely possibility
• Explicit modelling of tidal effects on grounding line movement
• Incorporation of rapid ice stream deglaciations into ice loading history

