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Ecologically sensitive moor influenced 

by hydrology and water abstraction

Goals:

• Prevent possible negative impacts of 

water abstraction

• Better system understanding

Introduction

• Long short-term memory (LSTM)

• Different designs / configurations

• Include physical knowledge

Methods

• Inserting preprocessed data leads to better prediction results

• Individual and combined influences can be represented well

• LSTM outperforms MODFLOW

• Scenarios of pumping events

party unplausible

Results

• Accurate predictions for a 

seven days prediction 

horizon

• More accurate when 

physical knowledge is 

included

Conclusion
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Introduction

Motivation:

• Ecologically valuable moor → Influenced by hydrology 

and water abstraction

• Complex aquifer → Difficult to model 

→ Forecasts of moor water levels difficult

Goals:

• Determine most efficient LSTM architecture

• Obtain robust, plausible and accurate predictions of the 

moor water levels

• Better system understanding

Satellite image: Google-Maps
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Methods

• Prepare raw data

• Long short-term memory (LSTM)

• Test metric: Mean squared error

• Different designs / configurations 

• Programming language: PyTorch

→ Prognosis for two measuring points

LSTM-Cell

Following [1]
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Methods

Measuring point 1

(No influence of pumping wells)

• Swamp water level (t=0)

• Precipitation (t=0, …, t=fh)

• Evapotranspiration (t=0, …, t=fh) 

External data input

Measuring point 2

(Influence of the pumps exists)

• Swamp water level (t=0)

• Precipitation (t=0, …, t=fh)

• Evapotranspiration (t=0, …, t=fh)

• Pumping rates well 1 (t=0, …, t=fh) 

• Pumping rates well 2 (t=0, …, t=fh) 
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Methods

Architecture
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Results

Inserting preprocessed data – Measuring point 2

Evapotranspiration
(Preprocessed) 

Raw data
(Air temperature, Sun duration, Relative humidity, Wind velocity)  

→ Inserting physical knowledge leads to better prediction results



University of Stuttgart

Results

Individual and combined influences – Measuring point 2

1 2

1 2 1 2

1 2

Pumping event 1: Low precipitation, High evapotranspiration → Drop in the SWL

Pumping event 2: High precipitation, Low evapotranspiration → Stable SWL

→ LSTM can identify this situations → Predicts the less pronounced fall of the SWL
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Results

LSTM and MODFLOW-Model

→ LSTM outperforms the MODFLOW-Model
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Results

Scenarios of pumping events

Plausible Unplausible

→ Currently adding physical constraints to counteract this



FYI: We are currently working on a paper and some additional experiments (Include 

constraints, amount of data necessary for good results, preselection of possible input data) 
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