Hydrological data analysis and groundwater flow modelling at a former uranium mine in France

Pierre L’Hermite¹, Valérie Plagnes¹, Anne Jost¹, Camille Chautard², Benoit Reilé³, Guillaume Kern⁴, Michael Descostes²

¹Sorbonne Université, CNRS, EPHE, METIS F-75005 Paris
²ORANO Mining, Environmental R&D Department – France
³Cabinet Reilé – France
⁴ORANO Mining, AMF Department – France
Context of former mine

- Aveyron: South of Massif Central

- Uranium mining from 1977 to 1995: 750 tons of natural Uranium

- Heap leaching treatment on site

- Remediation and decommissioning after the mine closure

- Mine tailings, waste rocks → stored in isolated cells in a natural valley with a drain underneath to collect water in the control basin

- Acid mine drainage: gypsum + oxygen + water

- Water treatment and site monitoring by ORANO Après-Mines
Site issues

• Understanding of groundwater flows at the basin scale
• Identification of the sources of water within the tailings storage area
• Interaction between water table and tailings under extreme events
• Testing potential decommissioning scenarios

Waste rocks on the storage during a geochemical sampling in piezometer V2

In part backfilled open pit mine
Data: groundwater and surface water monitoring

- Historical data: 20 years on 17 points (water levels, discharges at the control basin and the basin outlet)
- Implementation of 2 new piezometers
- Daily water level monitoring: since June 2018 (9 piezometers)
- Meteorological data at Rodez Météo-France station (20 years)

Localisation of monitored points
Methods

- Auto and cross correlations (rainfall with water levels and discharges)
- Water balance at basin scale and at the tailings outlet
- 3D modelling with MODFLOW at the basin scale
- Impact of extreme events on water levels

Cross correlation between daily rainfall and water levels
Hydrological conditions within the tailings-gneiss complex

- Fast hydrological response at the control basin: 5 to 8 days
- Unsaturated conditions and no perched groundwater within the tailings
- No water contribution from gneiss aquifer to the tailings storage

Cross section of the storage and water table

Legend
- Water level:
 - Maximum
 - Mean
 - Minimum
- Perforated casing

Water sludge from recent water treatment
- Waste rocks
- Leaching precipitates
- Clay
- Drain
- Gneiss

Control basin

Balaures channel

P4 (projected)
P3 (projected)

V1
50 m

West (mNGF)
East (mNGF)
Water balance at site scale

- Calculation of mean annual recharge: 400 mm/yr spatialized into 3 zones according to the type of surface
- Uncertainties on site discharges
- Sub-catchment of tailings storage:
 - 70% of groundwater + 30% water percolating through tailings
 - Validation with electrical conductivities

Sub-catchment of tailings storage water balance

Vertical recharge through tailings

Lateral recharge from gneiss aquifer

Q\(_1\) = 70%
\(\lambda = 60 \ \mu S/cm\)

Q\(_2\) = 30%
\(\lambda = 2150 \ \mu S/cm\)

Drain

Control basin

Water treatment plant

Q\(_{Total}\) = Q\(_1\) + Q\(_2\)
\(\lambda = 684 \ \mu S/cm\)
Modelling with MODFLOW

- Simplified model: 2 layers, 5 m long meshes
- Steady state
- Gneiss and sandstone aquifer
- Recharge from water balance
- No flow at the catchment limits except for the river output
- Specified head for river and intermittent creeks

3D representation of the modelling
Modelling with MODFLOW

- Reproduces water levels correctly
- Reproduces correctly:
 - Water levels within the tailings storage
 - Discharge at the basin control (+6.5%)

![Cross section of the model with the simulated water table](image)

![Simulated vs. Observed water levels](image)

Nash: 0.99
RMSE: 3.65 m
RMS: 2.96 m
Modelling with MODFLOW

- Particle tracking allows visualizing lateral water transfers through gneiss aquifer

- Long-term evolution scenarios: dry cover on the tailings storage
 - 35% decrease of the discharge at the control basin (Q_{BC})
Impact of extreme events on water tables

- Event definition: 1 or more consecutive rainy days (> 2 mm)

- Fast increase of groundwater level with consecutive rainy days
- Fast decrease of groundwater level: 5/6 days after the peak

- In 20 years of monthly water-level monitoring, water level never reaches the tailings
- In 2 years of daily water-level monitoring, no occurrence either
- The observation of the water level confirms the statistical approach
Conclusions
- Storage: unsaturated conditions, no perched aquifer
- At the outlet of the tailings (Q_{BC}) = 70% of water from gneiss aquifer (lateral flows) + 30% of water coming from vertical infiltration through tailings and waste rocks
- Groundwater modelling
 - Validation of recharge hypothesis
 - Groundwater flows at the basin scale
 - Validation of current functioning
- Extreme events
 - Water can be in contact with tailings less than 5 days with a period return greater than 20 years

Perspectives
- AMD is expected to occur for 50 to 100 years (Beaucaire C. (2021)) even with a dry cover on the tailings storage
- Long-term decommissioning
- Impact of climate change on water tables and discharges on the site
 - Climate variable trends during the 100 next years
 - Evolution of extreme events: frequency and intensity