

Disentangling controls and orbital pacing of Southeast Atlantic carbonate deposition since the Oligocene (30-0 Ma)

Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen Beddow, David Hodell, Nina Rohlfs, Roy Wilkens, Mitchell Lyle, David De Vleeschouwer, Maximilian Vahlenkamp, Fiona Rochholz, Heiko Palike, Lucas Lourens

The last 34 Myr documents the evolution from a unipolar to bipolar world

The **carbon cycle**, including atmospheric CO₂, is an important driver of the **cryosphere** in this Coolhouse to Icehouse development

> De Vleeschouwer, Drury et al., 2020 Nature Communications

with info from Westerhold et al., 2020, Science De Vleeschouwer et al., 2017, Geology

Carbonate deposition is an important part of the carbon cycle

Carbonate (CaCO₃) in the ocean is an important regulator of atmospheric CO₂ thanks to its role in buffering atmospheric CO₂ variations.

Deep-sea carbonate deposition itself controlled by productivity and dissolution

dissolution

Pacific – OK!

No equivalent Atlantic records existed ⇒ until now...

We estimated Southeast Atlantic CaCO₃ deposition using XRF In(Ca/Fe)

We accurately dated 30 million year old sequence by identifying orbital beats

CaCO₃ minima were tuned to eccentricity(-tilt) maxima from 30-8 Ma ▲

Drury et al., 2020, CPD; Bell et al., 2014, G-cubed; Liebrand et al., 2016, EPSL

We used different tuning approaches from 8-0 Ma because eccentricity was weaker **±**

Drury et al., 2020, CPD; Bell et al., 2014, G-cubed; Liebrand et al., 2016, EPSL

The orbital imprint on CaCO₃ deposition shows three distinct phases

The orbital imprint on CaCO₃ deposition shows three distinct phases

The orbital imprint on CaCO₃ deposition shows three distinct phases

Eccentricity-paced cyclicity (dissolution?) dominates during Miocene warmth

Eccentricity-paced cyclicity (dissolution?) dominates during Miocene warmth

Eccentricity-paced cyclicity (dissolution?) dominates during Miocene warmth

Precession-driven deposition prevails after the mid Miocene climate transition

Precession-driven deposition prevails after the mid Miocene climate transition

Precession-driven deposition prevails after the mid Miocene climate transition

Obliquity-precession driven CaCO₃ **dynamics arise after 8 Ma**

Late Miocene switch from in- to anti-phase eccentricity δ¹⁸O-δ¹³C relationship

De Vleeschouwer, Drury et al., 2020 Nature Communications

Late Miocene switch from in- to anti-phase eccentricity δ¹⁸O-δ¹³C relationship

High-latitude biomes drove this late Miocene in- to anti-phase switch

De Vleeschouwer, Drury et al., 2020 Nature Communications

High-latitude processes drove this late Miocene in- to anti-phase switch

Increased high-latitude forcing could cause the ~8 Ma onset of the LMBB

High-latitude processes may also drive the late Miocene biogenic bloom onset

For more information about this research:

https://doi.org/10.5194/cp-2020-108 Preprint. Discussion started: 4 September 2020 © Author(s) 2020. CC BY 4.0 License.

Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30-0 Ma)

Anna Joy Drury^{1,2*}, Diederik Liebrand¹, Thomas Westerhold¹, Helen M. Beddow³, David A. Hodell⁴, Nina Rohlfs¹, Roy H. Wilkens⁵, Mitch Lyle⁶, David B. Bell⁷, Dick Kroon⁷, Heiko Pälike¹, Lucas J. Lourens³

A 30 million year CaCO₃ view of climate, cryosphere and carbon cycle interactions

Increased high-latitude processes