A modified Coulomb failure seismicity model to study earthquake GFZ occurrence and frequency-magnitude distributions

Torsten Dahm Institute of Earth Sciences, University of Potsdam, GFZ German Research Centre for Geosciences, Germany

- Can we use a single model to explain all aspects of seismicity
- What is the relationship between background seismicity & stress?
- What controls aftershock activity?
- What does the short-term absence of seismicity mean?
- Is the Gutenberg Richter relation valid for time-dependent loads?

Seismicity models

1) Forecast rate and magnitude of earthquakes in a region under specified stressing

2) In addition to the background rate the temporal response of stress steps must also be explained.

Existing models (not complete):

A) Linear Coulomb failure (1 parameter) tension compression instable Coulomb stress (MPa) stable shear stress $|\sigma_s|$ σ_3 -200 effective normal stress $\sigma_n^{'}$ (MPa) σ_3

B) Rate & state frictional (Dieterich, 1981, 1994) (3 parameter)

Concept of earthquake nucleation at fault asperities

Snap shots of a growing, crack-type asperity

a) subcritical state:

asperity has a subcritical length and the stress intensity in the cohesion zone is below $\rm S_{_{\rm O}}$

b) critical state, rupture begins:

asperity has grown to critical length and the stress intensity exceeds the strength ${\rm S_{_0}}$

Implementation: concept

1. Random distribution of asperities at different stages of peak stress σ_{c}

2. Stress loading acting on volume V affects each asperity equally

3. Asperities with σ_c above strength S_0 are triggered and "removed" from distribution (points above red line)

Implementation: numerical scheme

Dahm (submitted to GJI)

Numerical scheme:

p: probability to be triggered

(depends only on stress, not on t)

X: distribution of asperities

(function of stress and time $t = i\Delta t$)

n: number of EQ triggered in interval Δt

$$p_0: p = H(\sigma - S_0), \quad \chi = \chi_0 V \cdot H(S_0 - \sigma)$$

$$\sigma_1 = t_i + \Delta t: \quad \sigma_c(t_{i+1}) = \sigma + \dot{\sigma}_c(t_i)\Delta t = \sigma + \Delta \sigma_c$$

n = 0

$$\chi^{(\operatorname{tmp})} = \chi_0 V \cdot H \left(S_0 - \sigma_c(t_{i+1}) \right) = T^S(\Delta \sigma_c) \cdot \chi_i$$
$$\Delta n = \int_{-\infty}^{\infty} \chi^{(\operatorname{tmp})}(\sigma) \cdot p(\sigma) \, d\sigma$$
$$\chi_{i+1} = \chi^{(\operatorname{tmp})} \cdot (1-p) \quad \text{(update distribution)},$$

Positive stress step $\Delta \sigma$ to simulate aftershock distributions

Application – global aftershock productivity and decay times

Earthquake productivity (t-t $_0$ < 2.4h) as a function of the main shock magnitude

Aftershock decay rates over lapse time for different main shock intervals

data from Hainzl & Marsan (2008)

Background seismicity rate at subduction zones

- The background rate depends on 2 parameters
- Increase nonlinear with stressing
- Saturates if $e^{-[...]} = 0$

Negative stress step to simulate stress shadow effects

The effect of $\Delta \sigma < 0$ is similar to RS:

- r is reduced but > 0
- recovery starts immediately
- the larger |Δσ| the longer the time needed to recover to r_g

Dahm (submitted to GJI)

Application KTB: 2 yrs of pumping & injection in 4 km depth

Weekly loading in a salt mine (Morsleben) from cement refilling

What about frequency magnitude distributions ?

The asperity nucleation model (e.g. Ohnaka, 2013) suggests that the seismic moment M_0 is controlled by the size a_c of the asperity (or breakdown slip Δu). We assume a fractal distribution of asperities by

$$\rho(a_c) = \frac{1}{a_0} \left[\frac{a_c}{a_0} \right]^-$$

This leads to Gutenberg Richter scaling for steady state background seismicity as:

$$r_{\Sigma}(M_0, t = \infty) = \chi_0 V \cdot \left[\frac{M_0}{M_r}\right]^{-2/3} \cdot f, \quad \text{with } f = \delta \dot{\sigma} \left[1 - e^{-\dot{\sigma}_c/\delta \dot{\sigma}}\right]$$

By analogy, we suggest a scaling of time dependent rates as:

$$\frac{M_0(t)}{M_r} = \left(\frac{\chi_0 V}{\Delta t}\right)^{3/2} \cdot \left[r_{\zeta}(M_0, t)\right]^{-3/2} \left[e^{-\dot{\sigma}_c^{\star}(t)/\delta\dot{\sigma}}\right]^{3/2}$$

Application to KTB seismicity

Predictions if $t^* > 0$

Traditional approach if $t^* = 0$

Measured f-M distributions at different times after the onset of seismicity (grayish)

Predicted f-M relations if a memory effect is considered (t*>0) or not considered (t*=0)

Parameter comparison

Application	M_c	V	χ_0	$\delta \dot{\sigma}$	References
		$[10^9 m^3]$	$\big[\frac{1}{MPakm^3}\big]$	[MPa/a]	
Morsleben salt	-5	$2.25 \cdot 10^{-6}$	$0.9\cdot 10^{12}$	110	Becker et al. (2010)
KTB pump-inject	-2.3	2.25	444	91	Haney et al. (2011) Shapiro et al. (2006)
M6 aftershocks	4.5	$1\cdot 10^3$	2.2	2	Hainzl & Marsan (2008)
M7 aftershocks	4.5	$3\cdot 10^4$	2.2	20	
GFZ					Un ^{iversit} är

Summary

- The modified Coulomb failure model considers time-dependent nucleation
- · It has only 2 independent parameter to explain seismicity (but Δt !)
- \sim The Omori-Utsu relation is explained, but intensity is t-dependent and p=1
- $\boldsymbol{\mathbf{v}}$ A instantaneous peak of seismicity is predicted at the time of the mainshock
- Stress shadow effects can be modelled
- A small parameter range indicated for very different applications

