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Deformation and collapse of intraplate basaltic volcanoes

La Réunion — Indian ocean
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Intraplate volcanoes are affected by a range of mass movement processes, ranging from near steady state
spreading/sliding to large volume slumps to far-traveling catastrophic collapses.



Processes leading to the collapse of Hawaliian volcanoes

» The majority of material recovered from slumps of Hawaiian volcanoes was erupted above sea level.
» Alink is observed between phases of high eruption/intrusion and lava accumulation rates and deformation
» Several possible ductile layers: sediments on oceanic plate, hydrothermally altered lavas, dense dunite bodies

» Question: is there a general link between magma storage and transfer and volcano instabilities?

Portion of flank compressed by cumulate fiow and deep intrusions.
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Sampling of PdF caldera-related explosive breccias
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» Dm-sized basaltic blocks from the most recent breccias (Bellecombe-5kyrs; Plaine des Sables-65kyrs);
» Focus on unaltered samples (low proportion of altered clasts in the breccia);

» Reference samples from exposed dykes and modern lavas;



Large petrological heterogeneity of caldera-related explosive breccias

gabbro lava

» Aphyric and cotectic (ol+cpx+pl) vesicular lavas

» Porphyritic dense lavas (ol; pl +/- cpx)

» Dolerites (ol-pl variolitic micro-troctolite)

- » Fine-grained gabbros (ol-cpx)
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Large physical heterogeneity of caldera related explosive breccias

Typical range of modern lavas: vesicles
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» Breccias permit to document the full range of rock
porosity produced by effusive and intrusive activity.
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Dense shallow intrusives (dolerite; gabbro): microcracks
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wet to dry P — wave velocity ratio
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Wet and dry P-wave velocity

» P-wave velocity increases from vesicular aphyric lavas to dense ol-rich
lavas to fine-grained dense dolerites;

» Scattering in vesicular lavas poorly correlated with modal mineralogy;

» Water saturation increases P-wave velocity in vesicular lavas (>0.25);

» Low seismic velocity of our gabbros;
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axial stress (MPa)

Uniaxial compressive strength (UCS)
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» Very large range in UCS;

» UCS decreases with increasing vesicularity from fine-grained
dolerite dykes to vesicular lavas;

» Unexpected low UCS in gabbros (abundant micro-cracks

and cpx-pl cleavages);

Consistent with properties of gabbro slowly heated to 1000°C

(Keshavarz et al., P.A.G, 2010)



Young’s modulus
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and can deform without collapsing;

(a) Elastic medium

E=5GPa

(d) Elasto-plastic medium

E=50GPa
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Got et al., JGR, 2013
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Physical properties of basaltic volcanoes

» Large range in porosity (from vesicular and dense lavas to dense dykes and gabbros)
control the variability in basaltic rock properties;

» Complex link with modal lava composition and phenocryst size/content;

» No need of extensive hydrothermal alteration to produce large
heterogeneities and jump in physical properties in basaltic volcanoes;

» Unexpected weak behaviour (low P-wave, low UCS, low Young modulus)
of shallow intrusive bodies (gabbros): influence of heating cycles on
mineral oxydation, high micro-crack density and expansion of fluid inclusions;



Sliding and collapse of intraplate basaltic volcanoes
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» Evolved basalt composition and shallow magma storage
(close to sea level) at Piton de la Fournaise: gabbros

instead of dunites (Hawaii);

» Dissected Piton des Neiges outcrops shows detachment
related to repeated sill injection on the gabbro-lava

interface (jump in petro-physical properties);

» Possible role of gabbro weakening in promoting
transition from slow sliding to catastrophic collapse;
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ABSTRACT

Piton de la Fournaise (PdF) is an active basaltic volcano whose eruptive activity is predominantly charac-
terized by frequent effusive to mildly explosive (Hawaiian-Strombolian) eruptions. The geologic record also
preserves evidence of less frequent, major explosive eruptions, typically associated with the seaward sliding
of the steep east flank. Such eruptions formed calderas that are several km in diameter and their products
have been emplaced as proximal pyroclastic breccias and medial fall deposits dispersed over tens of km. Such
rare yet recurrent highly explosive events at volcanoes exhibiting predominantly effusive behavior are accru-
ing increasingly more attention. The breccias of PdF offer the unique opportunity to sample a wide range of
different crustal lithologies covering most of the litho-stratigraphy of La Réunion edifice. In the framework
of the national project “SlideVOLC”, funded by the National Research Agency of France (ANR), a petrological
and petrophysical characterization of 14 different effusive and intrusive lithologies has been conducted. Petro-
logical analysis of samples from the Plaine des Sables and Bellecombe breccias (deposits relating to the main
recent explosive events related to volcano destabilization) reveal a large range of fresh to weakly altered basaltic
lithologies, encompassing plutonic (fine to medium grained gabbros), sub-volcanic (fine-grained dolerites em-
placed in sills and dykes), and volcanic (lavas with variable vesicularity and porphyricity) units. Petrophysical
measurements revealed a corresponding variability in density, porosity, P-wave velocity (dry and wet), and uni-
axial compressive strength (UCS), confirming the petrophysical consequences of the lithological diversity of
PdE. The large variation in P-wave velocity and UCS is interpreted to be the result of the wide ranges in texture
(porosity/vesicularity) and lithology. Notably, some of the dense gabbroic units that have remained intact de-
spite likely having experienced several natural cycles of reheating are comparatively weak. Different lithologies
cannot simply be distinguished solely on the basis of their physical properties. We infer that volcano instability
should not be interpreted solely in terms of altered (hydrothermalised) rock units. Rather, the large petrophys-
ical heterogeneity of crustal rocks at PdF, and by inference likely at many other volcanoes, must be considered
when interpreting monitoring data and assessing potential hazards related to volcano stability.
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