The role of ocean heat transport from the Atlantic into the Arctic Ocean on sea ice variability

David Schroeder & Danny Feltham

Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, UK

Natural Environment Research Council

NATURAL ENVIRONMENT RESEARCH COUNCIL

Motivation

- Decrease of Arctic sea ice affects future climate in the Arctic and beyond
- > Important to understand drivers of sea ice variability and trend
- Previous model studies:
 - summer sea ice mainly driven by atmospheric processes (incoming radiation and albedo feedback, e.g. Serreze MC & Stroeve J. Philos Trans A Math Phys Eng Sci 2015)
 - winter sea ice extent by ocean processes (ocean heat transport from Atlantic into Arctic Ocean, e.g. Auclair, G. & Tremblay, L. B., JGR 2018; Årthun, M., T. Eldevik, and L. H. Smedsrud, J. Climate 2019).

Method

We analyse a historical simulation with the UK Earth System Model (UKESM1) performed for CMIP6 from 1850 to 2014 and ocean – sea ice simulations forced by atmospheric reanalysis data with the same ocean model NEMOv3.6 and sea ice model CICEv5.1.

Focus on 3 parameters:

- Sea Ice: Annual (July-June) mean Barents Sea Ice extent
- Ocean: Winter (Nov-Apr) mean of ocean heat transport trough Barents Sea Opening (BSO)
- Atmosphere: Annual (July-June) mean incoming longwave radiation over Barents Sea

Figure from Årthun, M., T. Eldevik, and L. H. Smedsrud, J. Climate 2019

UKESM1 historical simulation

Strong negative correlation between BSO and Barents Sea Ice Extent for 164y time series (consistent with literature)

Anomalies in 10,000 km² (Extent), TW (BSO) and Wm⁻² (LWD)

Lag correlation between BSO and Ice Extent

Lag in years

UKESM1 historical simulation

> Similar results for 30y time series

Lag correlation between BSO and Ice Extent

Lag in years

Forced ocean – sea ice simulation (DFS5.2 atmospheric reanalysis data)

Detrended time series

Anomalies in 10,000 km² (Extent), TW (BSO) and Wm⁻² (LWD)

No correlation between BSO and Barents Sea Ice Extent in forced simulation

Lag correlation between BSO and Ice Extent

Forced ocean – sea ice simulation (CORE atmospheric reanalysis data)

Barents Sea Ice Extent in forced simulation (DFS and CORE forcing)

No correlation between BSO and

Detrended time series

Anomalies in 10,000 km² (Extent), TW (BSO) and Wm⁻² (LWD)

Lag correlation between BSO and Ice Extent

Lag in years

Lag correlation between LWD (Incoming longwave radiation) and Ice Extent

Strong negative correlation between LWD and Barents Sea Ice Extent for coupled and forced simulation for lag = 0 years

UKESM 1 historical simulation

Forced ocean – sea ice simulation (DFS52 atmospheric reanalysis data)

Lag in years

Correlation between BSO and local sea ice thickness (1980-2009)

UKESM1

Forced NEMO-CICE (DFS5.2)

Correlation between LWD and local sea ice thickness (1980-2009)

Forced NEMO-CICE (DFS5.2)

Difference in sea ice thickness: 5y with max BSO minus 5y with min BSO

UKESM1

Forced NEMO-CICE (DFS5.2)

Incoming longwave radiation in Wm⁻²

Total cloud cover in %

=> 1.5m air temp up to 6K higher in years with strongest BSO

Summary

- UKESM1 simulation confirms previous findings: annual ocean heat transport between Norway and Svalbard is strongly correlated with the winter sea ice extent and thickness in the Barents Sea.
- Correlation does not exist for ocean-ice simulations forced with atmospheric reanalysis data.
- Strong correlation for annual mean incoming longwave radiation with winter sea ice extent and thickness in the Barents Sea in all simulations.
- BSO ocean heat transport does not affect sea ice directly, but only via interaction with atmosphere.