
(APL) JOHNS HOPKINS

Interstellar Medium for the Next Decade

Pontus C. Brandt, R. L. McNutt, Jr., E. Provornikova, C. Lisse, K. Mandt, A. Rymer, K. Runyon, P. Mostafavi, R. DeMajistre, E. C. Roelof, D. Turner, M. E. Hill, J. Kinnison, G. Rogers, C. Smith, G. Fountain, D. Copeland, R. Ashtari, R. Stough

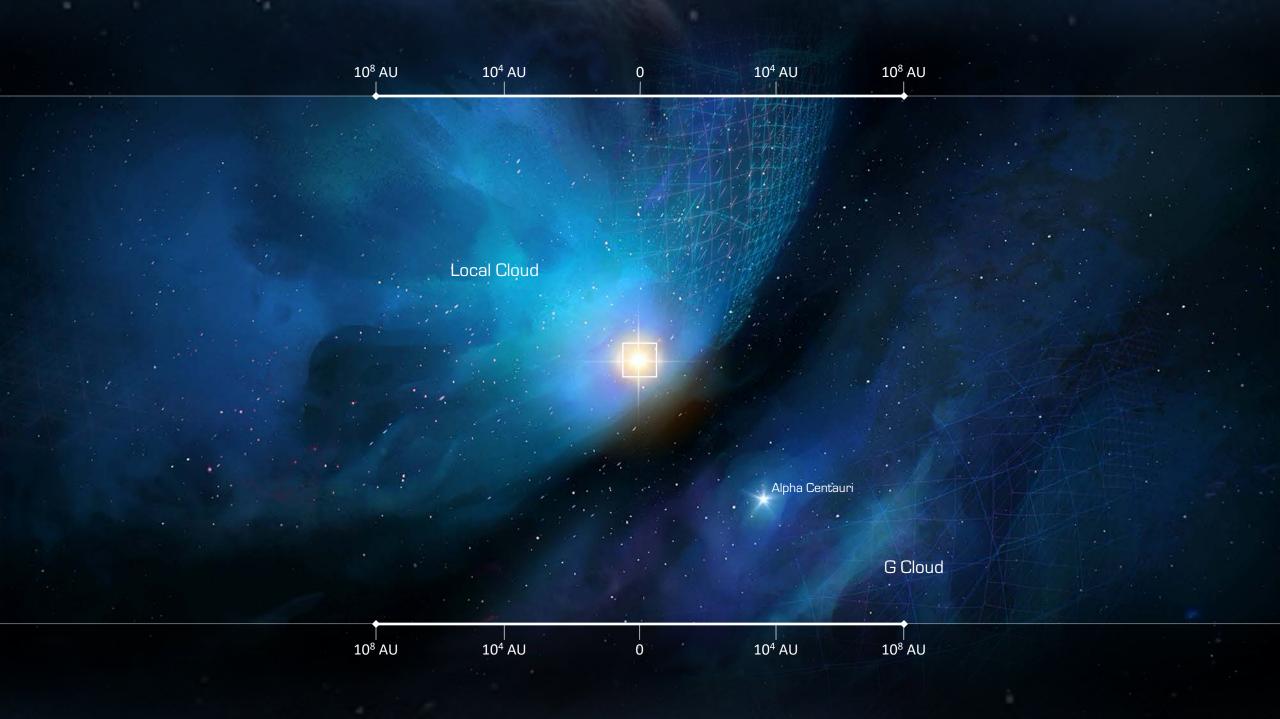
EGU 2021 : ST1.1 : 14:02 CET vPico 26 April, Virtual Voyager 1 (152.5 AU)

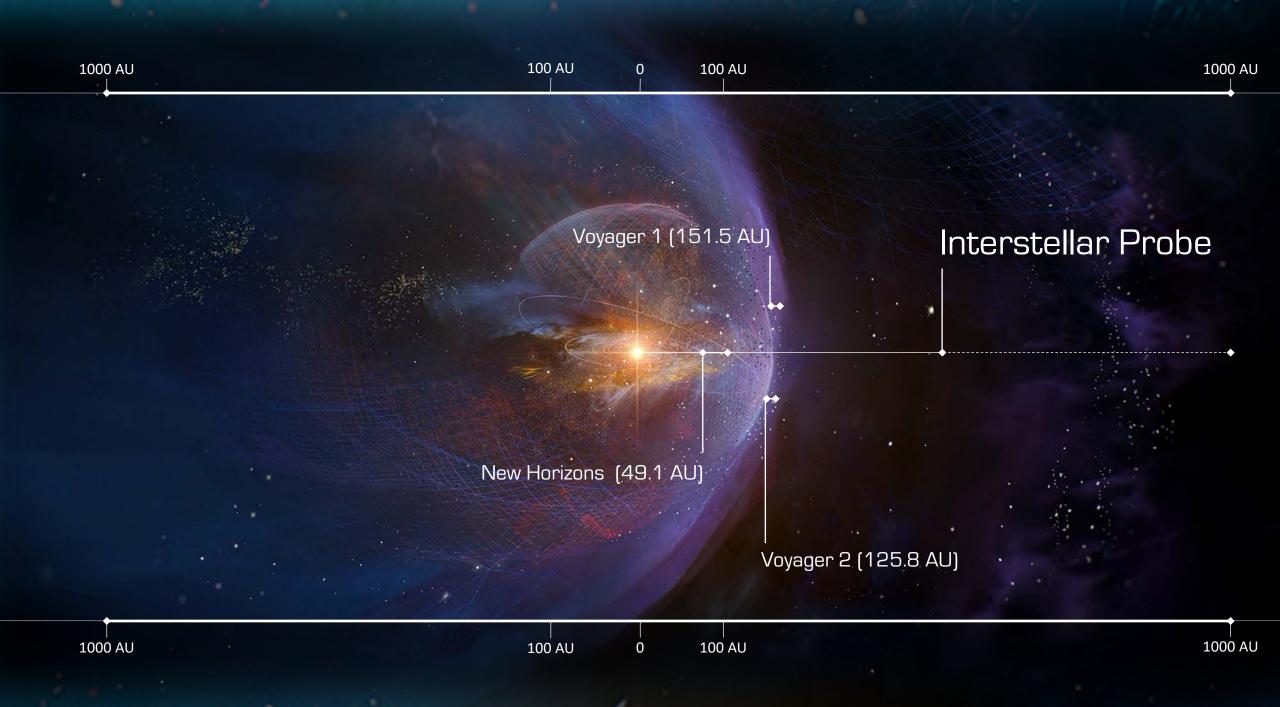
New Horizons (49.9 AU)

0

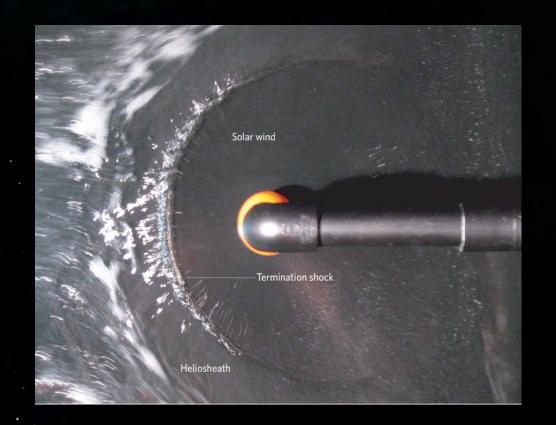
100 AU

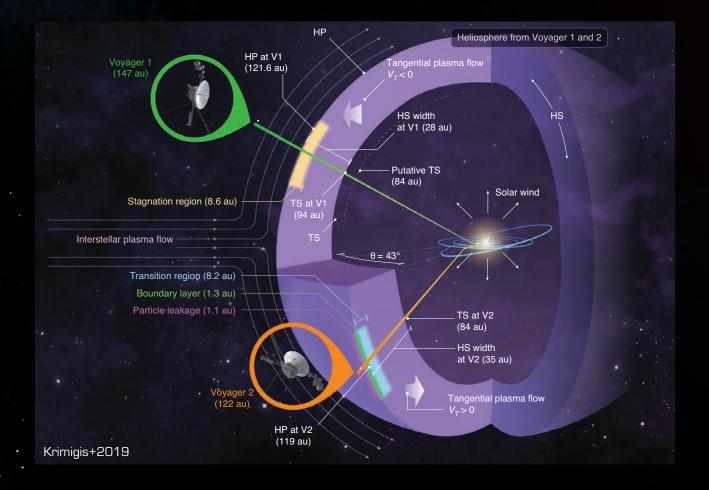
Interstellar Probe


1000 AU


Voyager 2 (126.7 AU)

100 AU



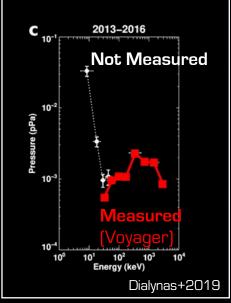

The Heliosphere The very basics

- The Sun plows through the LISM with ~24 km/s
- The expanding solar wind meets the apparent flow of LISM
- The <u>Termination Shock</u> (TS) is where the outward solar wind flow is "terminated" and slowed creating a shock (this is where the water from the faucet piles up)
- The <u>Heliosheath</u> (HS) beyond the TS contains the slowed and shocked solar wind plasma that flows outward and bends around
- The <u>Heliopause</u> (HP) is theoretically where the solar wind stops and the LISM takes over (pressure balance)
- This hydrodynamic picture is intuitive, but after all it is just a sink...
- Interstellar Neutrals (ISNs) penetrate the heliosphere, ionizes and become Pick-Up Ions(PUIs) that are carried out with the solar wind mediating the shock conditions and the force balance...
- Therefore, the creation of the boundary already starts deep inside the heliosphere...

Current Understanding of the Heliosphere

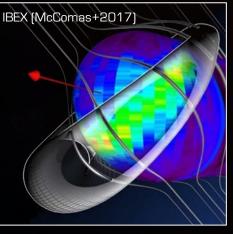
We know a lot, but have just scratched the surface of a new regime

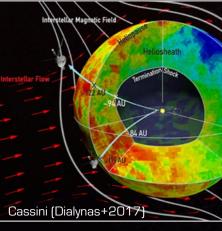
- Voyager 1 and 2 are the only spacecraft to have traversed the Heliopause (HP)
- While they determined the basic parameters in two directions, their limited payload left a range of mysteries
- IBEX and Cassini have imaged the boundaries from the inside and have brought the best global understanding to date, but still lack consistent interpretations
- Other observations include SOHO, Ulysses, New Horizons (and more) that have brought us remote information on interstellar neutrals and their critical interaction with the heliosphere
- IMAP (launch 2024) will provide order-ofmagnitude better ENA imaging capabilities from 1 AU and guide the further formulation of the Interstellar Probe Science Investigation


Primary Goal: Understand our Habitable Astrosphere and its Home in the Galaxy Objective 1: A Heliosphere Shaped by the Sun

Determine the physical processes that shape the heliosphere and how they manifest themselves globally

Processes Upholding the Shape


Probing the boundary to determine how solar wind plasma is heated to become the dominant force of the heliosheath. Measure directly the source and evolution of the critical Interstellar Pick-Up Ions (PUIs).

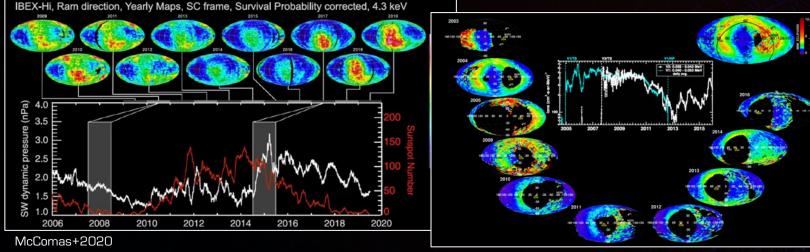

> Voyager encountered a completely new regime of space plasma interactions. The expected heating of solar wind plasma across the termination shock was almost absent and the predominant energy appeared to be transferred to the socalled pick-up ions, not directly measured by Voyager.

Global Manifestation

Global imaging from a changing vantage point and capture the first definitive picture from the outside

IBEX and Cassini have revealed what we know to date about the heliospheric shape, but both from a vantage point deep inside the heliosphere. This has made a unique interpretation difficult.

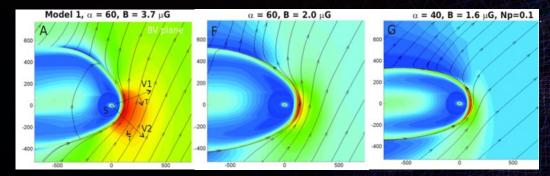
DeMajistre+2019 Galli+2019


Capturing an image from outside heliosphere will provide the definitive observation of its global manifestation (simulation from 250 AU)

APL,

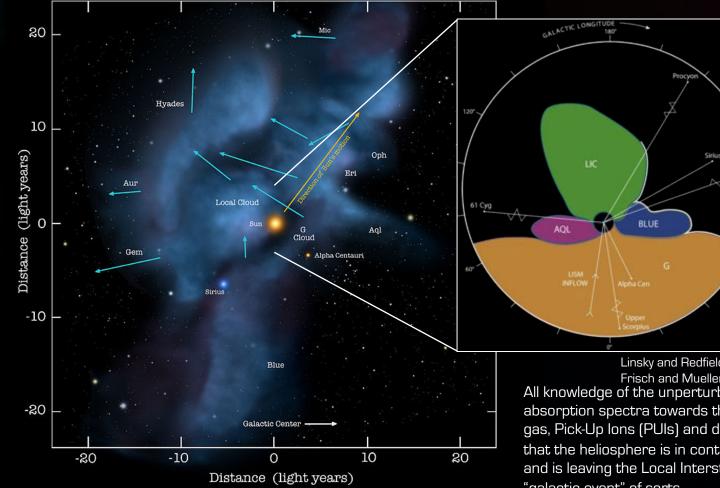
Primary Goal: Understand our Habitable Astrosphere and its Home in the Galaxy Objective 2: A Variable Sun in a Changing Interstellar Environment Determine how the Sun's activity, the interstellar medium and its possible inhomogeneity influence the dynamics and evolution of the global heliosphere

The Breathing Heliosphere Harboring a Variable Sun


In-situ measurements of solar wind disturbances propagating through the heliosphere and heliosheath. Imaging of global response along the outward trajectory.

Cassini (Dialynas+2017)

The Changing Heliosphere Through an Inhomogeneous ISM


Detailed measurements at the boundary and in the VLISM to understand how the heliosphere would respond once the Sun encounters the new environments of the neighboring interstellar cloud

LIC conditions largely determine what our heliosphere look like (Izmodenov & Alexashov 2020)

,apl,

Primary Goal: Understand our Habitable Astrosphere and its Home in the Galaxy **Objective 3:** Into the Unknown Interstellar Cloud Discover and quantify directly the properties of the unexplored VLISM

The Unexplored Interstellar Cloud

The first direct sampling of density, temperature, composition and fields beyond the heliopause would provide decisive information on the heliospheric interaction, and also on the chemical evolution of the galaxy.

Linsky and Redfield 2019 Frisch and Mueller 2013

All knowledge of the unperturbed LISM are average basic properties inferred from absorption spectra towards the nearest stars, and from measurements of interstellar gas, Pick-Up lons (PUIs) and dust penetrating the heliosphere. New evidence is mounting that the heliosphere is in contact with four interstellar clouds with different properties and is leaving the Local Interstellar Cloud within relatively short galactic time scales - a "galactic event" of sorts.

Supporting Goal: Understand The Origin and Evolution of Planetary Systems Planets, KBOs and Circum-Solar Dust Disk

KBOs and (Dwarf) Planets:


- Current state of evolution: Geophysics and composition
- Collisional, orbital and geological history: Shape, size distribution, orbit
- Atmospheres: Structure and composition
- Giant Planets Science: Observations during JGA

Circum-Solar Dust Disk:

- Dust processing in the Solar nebula: Dust compositional distribution
- Dust production mechanisms: Dust size distribution
- Large-scale dynamics: Disk structure associated with planets, asteroids, KBOs, solar activity


Exoplanetary Analogues

 Solar System Observations from afar: Phase curves, transit spectra, etc to help better infer characteristics of exoplanetary systems

130 dwarf planets and over 4000 KBOs. Any direction defined by Heliophysics offers a at least one compelling flyby.

Dust Disk of HL-Tauri: Planetary formation at 1 million years!? A solar system infant?

Sol: 4.6 billion years. Never seen. Not enough data to simulate accurately.

Supporting Goal: Understand Galaxy and Star Formation

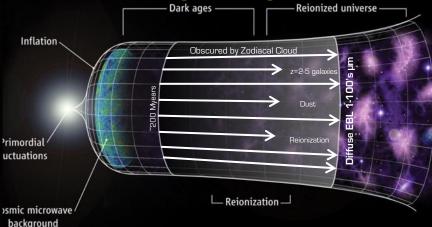
Extragalactic Background Light (EBL), Interstellar Dust (ISD), Nucleosynthesis and Constraints on Big Bang

Extragalactic Background Light:

- Diffuse red-shifted light emitted by all stars and galaxies from ~200 My after Big Bang
- IR spectrum completely obscured by the Zodiacal cloud
- Critical information on energy release and galaxy formation in the early universe

Interstellar Dust Grains:

- Composition and Evolution of the Near and Distant ISM: Remote IR observations and in-situ measurements of ISD properties
- Chemical Evolution of the Galaxy: In-situ ISD elemental and isotopical composition


Recent Nucleosynthesis:

 In-situ isotopic ratios of D/H, ³He/⁴He, ¹³C/¹²C, ¹⁸O/¹⁶O, ²²Ne/²⁰Ne, ³⁸Ar/³⁶Ar

Constraints on Cosmology:

²H, ³He, and ⁴He abundances in the VLISM

Extra-Galactic Background Light

Mission Architecture

- Study Requirements
 - Nominal Design Lifetime: 50 years
 - Ability to operate at 1000 AU
 - Readiness by 1 January 2030
- Mass: 850-950 kg
- Power: Two Next Generation RTGs with >300 W_e (total) after 50 years
- Payload
 - Mass: ~85 kg, trading lighter and heavier payloads
 - Two examples
- Telecommunication
 - X-band to achieve 500 bps downlink at 1000 AU
 - Large fixed dish (5m for X-band)
- Control
 - Spinning or three-axis depending on payload, thruster-only control
 - Pointing and control requirements driven by telecom

	Interstellar Probe Mass (kg) (Includes contingency)	
	Payload	105
	Telecommunications	83.4
	Guidance and Control	16.8
A	Power	169
State States	Thermal Control	70.8
Statistics	Avionics	12.8
	Propulsion	37.2
	Mechanical/Structure	150
	Harness	29.3
	Propellant	.106
	Total	793
	Margin	80
	Launch Mass	873

Notional Operations Scenarios Driving Mission Architecture Designs

<u>Baseline Scenario</u>

- (concluding now)Spin stabilized
- 50m PWS wire antennas

Inner Heliosphere Phase 1-90 AU

- In-situ measurements of magnetic fields, solar wind and PUI
- ENA and Ly-a imaging from a changing vantage point
- PWS observations of 2.5 kHz emission

Heliosheath Phase 90-120 AU

- In-situ measurements through boundary region
- ENA and LYA imaging
- PWS Observations

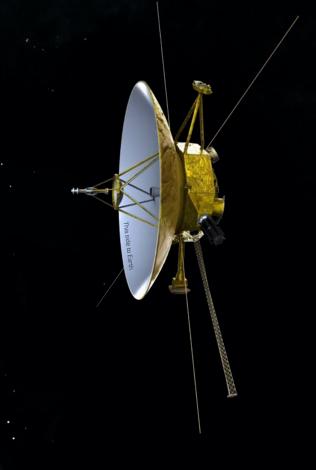
Interstellar Phase

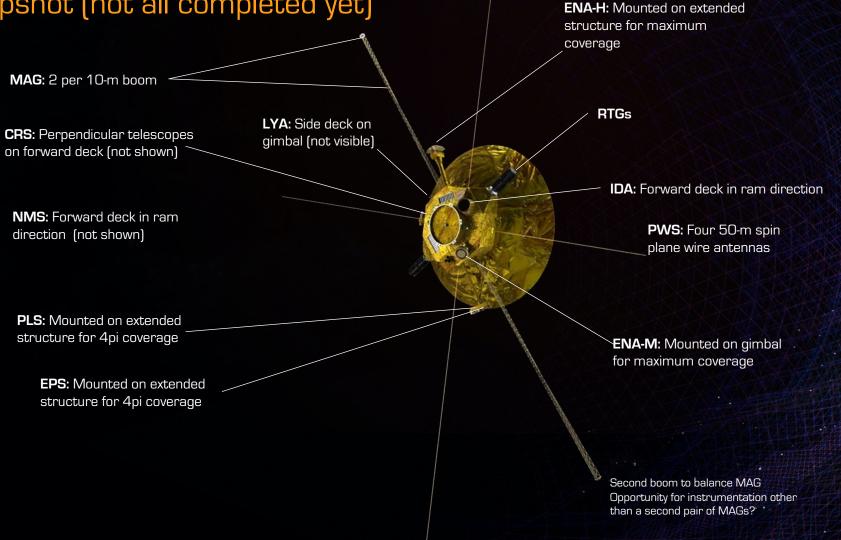
- >120 AU
 In-situ measurements of ISM gas, neutrals and dust
- External ENA and Ly-lpha imaging
- In-situ measurements of ribbon

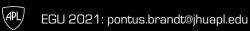
Example Model Payloads

	Baseline	Instrument (Heritage)	Measurement Requiren	nents	Mission Requirements	Science Driver
	87.4 kg 86.7 W	Magnetometer (MAG) (MMS/DFG)	0.01 - 100 nT; 0.01 nT (10 ⁸ nT ² /Hz turb.)	≤60 s; (100 Hz)	Two FG, 10m boom	LISM (turbulence)
	Charged Particles	Plasma Waves (PWS) (Van Allen/EFW)	~1 Hz – 1 MHz; Δf∕ f≤4% ≤0.7 μV∕m @ 3 kHz	≤60 s [≤ 4 s at TS]	4x50 m wire; spin plane	LISM ne, Te (QTN), turbulence
	 Fields and Waves ENA Imaging 	Plasma Subsystem (PLS) (PSP/SWEAP/SPAN-A)	~eV to 10's keV e, H+, He+, C+, N-O+	~4π; ≤60 s	Spinning	Flows, ne, Te, ni, Ti Force balance
	 Dust Neutrals 	Pick-up Ions (PUI) [Ulysses/SWICS]	0.5-78 keV/q H, ³ He, ⁴ He, C, ¹⁴ N, ¹⁶ O, ²⁰ Ne, ²² Ne, Mg, Si, Fe (charge states)	iFOV: 60°	Spinning	Interstellar, inner PUI Force balance
	Ly-alpha	Energetic Particles (EPS) (PSP/EPI-Lo)	10's keV – 1's MeV H, ³ He, ⁴ He, C, O, Ne, Mg, Si, Fe (Li⁄ BeB)	~4π; ≤60 s	Spinning	S/W, HS and ACRs Force balance
	14%	Cosmic Rays (CRS) (PSP/EPI-Hi, new development)	H to Sn; ≤1 GeV∕nuc; ∆m= 1 amu electrons; ≤10 MeV	≥2 directions; daily	Spinning	ACRs, GCRs LiBeB cosmic story
	30%	Interstellar Dust Analyzer (IDA) (IMAP/IDEX, new development)	1-500 amu; m∕∆m: ≥ 200	iFOV: 90°	Ram direction Co-boresighted NMS	ISDs, galactic heavy ion . composition
11%		Neutral Mass Spectrometer (NMS) (LunaResurs/NGMS, JUICE/NMS)	H to Fe, m/Δm > 100 (1σ) 1 – 300 u/e	iFOV: 10°; weekly	Ram direction Co-boresighted IDA	LISM composition
129	//0	ENA (ENA) (IMAP/Ultra, new development)	~1-100 keV; H (He, O goal)	iFOV: 170° x 90°	Spinning, 2 heads	Shape, force bạlance, ribbon/belt
•	14%	Lyman-Alpha Spectrograph (LYA) (MAVEN/IUVS, new development)	120-130 nm; 0.004nm	iFOV: 5°; 140° monthly	Spinning	LISM and heliosheath H

APL


Example Model Payloads


Augmentation	Instrument (Heritage)	Measurement Requir	rements	Mission Requirements	Science Driver
89.1 kg 90.2 W	Magnetometer (MAG) (MMS/DFG)	0.01 - 100 nT; 0.01 nT (10 ⁸ nT ² /Hz turb.)	≤60 s; (100 Hz)	Two FG, 10m boom	LISM (turbulence)
Charged Particles	Plasma Waves (PWS) (PSP/FIELDS, Van Allen/EFW, in development)	≤10 kHz; Δf/f≤15% ≤0.7 μV/m @ 3 kHz	≤60 s [≤ 4 s at TS]	4x2.5m rigid + sounder (4x50 m optional)	2.5 kHz, ne (Te, turbulence)
 Fields and Waves ENA Imaging 	Plasma Subsystem (PLS) (PSP/SWEAP/SPAN-A)	~eV to 10's keV e, H+, He+, C+, N-O+	~4π; ≤60 s	Spinning	Flows, ne, Te, ni, Ti Force balance
DustNeutrals	Pick-up Ions (PUI) (Ulysses/SWICS)	0.5-78 keV/q H, ³ He, ⁴ He, C, ¹⁴ N, ¹⁶ O, ²⁰ Ne, ²² Ne, Mg, Si, Fe (charge states)	iFOV: 60°	Spinning	Interstellar, inner PUI Force balance
Flyby ImagingIRM	Energetic Particles (EPS) (PSP/EPI-Lo)	10's keV – 1's MeV H, ³ He, ⁴ He, C, O, Ne, Mg, Si, Fe (Li∕BeB)	~4π; ≤60 s	Spinning	S/W, HS and ACRs Force balance
6%	Cosmic Rays (CRS) (PSP/EPI-Hi, in development)	H to Sn; ≤1 GeV/ nuc; ∆m= 1 amu electrons; ≤10 MeV	≥2 directions; daily	Spinning	ACRs, GCRs LiBeB cosmic story
12%	Interstellar Dust Analyzer (IDA) (IMAP/IDEX, in development)	1-500 amu; m∕∆m: ≥ 200	iFOV: 90°	Ram direction Co-boresighted NMS	ISDs, galactic heavy ion composition
%	Neutral Mass Spectrometer (NMS) (LunaResurs/NGMS, JUICE/NMS)	H to Fe, m/Δm > 100 (1σ) 1 – 300 u/e	iFOV: 10°; weekly	Ram direction Co-boresighted IDA	LISM composition
	ENA (ENA) (IMAP/Ultra, in development)	~1-100 keV; H (He, O goal)	iFOV: 170° x 90°	Spinning, 2 heads	Shape, force balance, ribbon/belt
11% 17%	Visible-Near-IR (VIR) (New Horizons/Ralph)	0.4-4 µm; 5 ch. ≤0.975 µm; >240 ch. >0.975 µm	Pixel: 10 µrad FOV: 2.3 °x1.2 °	3-axis Co-boresighted IRM	Flyby features/composition, distant KBOs, astro
13%	Visible-IR Mapper (IRM) (New Horizons/LEISA, CYBER-II, in development)	0.5-15 μm 30-60 μm	52 µrad/1.8° 1.3 mrad/0.07°	3-axis; perp. to spin Co-boresighted VIR	Dust Disk, surface comp., ISM dust, CBL


11

Example Accommodation

Heliophysics Baseline: Snapshot (not all completed yet)

	Interstellar Probe Com	nmunications Subsystems
HGA	HGA	5m Solid Composite
	MGA	0.37m Solid Composite
Aft LGA	TWTA Power	52 W
++	Subsystem Mass (CBE)	72.9 kg HGA – 53.7 kg
This side	Downlink Data Rate ¹	2592 bps (375 AU) 365 bps (1000 AU)
to Earth	Uplink Data Rate ²	2000 bps (375 AU) 250 bps (1000 AU)
MGA	¹ – Turbo R1/6 encoding, ng ² – DSN 70m station w/ 80	yVLA Ground Station kW Tx, LDPC encoding

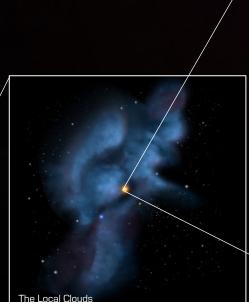
Communication

HGA	5m Solid Composite
MGA	0.37m Solid Composite
TWTA Power	52 W
Subsystem Mass (CBE)	72.9 kg HGA – 53.7 kg
Downlink Data Rate ¹	2592 bps (375 AU) 365 bps (1000 AU)
Uplink Data Rate ²	2000 bps (375 AU) 250 bps (1000 AU)
1 – Turbo R1/6 encoding, ngV	/LA Ground Station

Baseline Trajectory

PoweredFB Speed Map [C3 = 203.91 km ² /s ²] for KBO dates 2030-2042	
60 60 60 60 60 60 60 60 60 60	
60 60 60 60 60 60 60 60 60 60	
30 Salacia 2002TC802 2005TN53 ⁴ 2005TN53 ⁴ 2005TN53 ⁴ 2005C0105 Varuna 2000C0105 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2014FJ72 201	
10 10 10 10 10 10 10 10 10 10	
30 Salacia 2002TC802 2005TN53 ² 2005TN53 ² 2005TN53 ² 2014YE50 2014YE50 2014YE50 2014YE50 2014YE50 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2014F572 2014F572 2014FF772 2014FF772 2014FF772 2014FF772	
30 Salacia 2002TC802 2005TN53 ⁴ 2005TN53 ⁴ 2005TN53 ⁴ 2005C0105 Varuna 2000C0105 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2013FS28 2014FJ72 201	-
Salacia 2002TC9502 2014YX49* Variation Variation 15 2005TN53* 2000C0105 1996G021 Huya 2000T054 0 Salacia 2000C0105 1996G021 Outcome 0 2000C0105 Notse 2013/FS26 Deucalion 0 0 2007OR10 Notse 2013/FS26 Deucalion Pluto 2007OR10 Firis 2012/VP113(Biden) 20110/F99* 2014/F772 2014/F772 2014/F772	
Image: Sector Point of the sector o	
Orcus	1
O Orcus	
O Orcus	
Orcus	
OTCUS CONTRACTOR OF A CONTRACTOR O	
WISE 0855-0714 IBEX Ribbon	
-30 Epsilon Eridani	
-45 Proxima Centauri	
Provinsi Centauri	
-00 Ontimized Example Repeline Direction	
Optimized Example Baseline Direction	
7.6 AU/year	
2031 2032 2039 2040 2030 -90	
0 30 60 90 120 150 180 210 240 270 300 330 Ecliptic Longitude (deg)	360

Direction Trades from 2019 Workshop


	Direction	Heliophysics Trades
	~45° off nose	 Through ribbon (~285° ELON) Good for imaging from outside Good for ISD
	Nose	 Fast way to LISM Stagnation, high-pressure region, force balance Good for ISD Not through max ribbon Not optimal for imaging from outside
eed at 100AU (AU <i>Y</i> r)	Flank (~90°)	 HP data point important for shape ACR acceleration May be longer to reach LISM Not in the ribbon Dust duty cycle limited
Speed at	~135° off Nose	 Problematic for dust Sufficiently close to the direction of CMA Maximum outbound speed area
	Tailward	 Problematic for dust Sufficiently close to the direction of CMA
	Off Ecliptic (U/N)	 Jets, turbulence Towards EUV ionizing stars (CMA) Not through ribbon (tailward)

EGU 2021: pontus.brandt@jhuapl.edu

Concluding Remarks

- Interstellar Probe is the beginning of Humanity's journey in to the galaxy
- We are there technically to take this first explicit step
- Interstellar Probe will take us to a completely unexplored region of space – Mare Incognitum* – to understand our home in the galaxy and find answers to questions we do not yet know how to pose

Milky Way and the Orion Spur

*Unknown Sea

Galactic Supercluster Laniakea

APL,

Begin.

Sign up to take part: <u>interstellarprobe.jhuapl.edu</u> pontus.brandt@jhuapl.edu

Gravity Assist here