Introduction

Environmental and engineering projects require subsurface cavities to be mapped for assessing ground stabilities and construction risks. However, resistivity imaging is often applied to determine size, position, and depth of cavity, it highly varied based cavity depth. We examined uncertainty of resistivity methods with survey depths.

Methods

A single cavity (1.5m x 6m) model set at six different depths of limestone medium, naming cavity targets as T1, T2, T3, T4, T5, and T6 where the cavity set at depths of 2.2 m, 4.2 m, 6.2 m, 8.2 m, 10.2 m, and 12.2 m, respectively (Fig. 1). Cavity models were simulated to generate synthetic resistivity for dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS), and pole-pole (PP) arrays.

Fig. 1 Resistivity models for cavity set at six different depths in limestone medium.

Depth of investigation (DOI) index determined:

$$DOI(x, z) = \frac{m_1(x, z) - m_2(x, z)}{m_{101} - m_{202}}$$

where m1 and m2 are inverted resistivities of the same cell for two inversions.

Results and Discussion

The portion of inverted models above DOI index of 0.1 showed better model resolution. Resolution of cavity anomaly decreases with survey depth (Figs. 2-5).

Fig. 2 The inverted models for DD array. Broken line represents DOI threshold depth. Rectangular box indicates the actual cavity model.

Fig. 3 The inverted models for PD array.

DD array resolved the highest model resolutions that indicate relatively distinct anomaly boundaries, yet the detection level limited with increasing target depth.

WS and PD arrays recovered good resolution but determining the anomaly boundaries were relatively challenging.

PP array provided the lowest resolution, and its anomalies were also far from the actual cavity models.

Fig. 4 The inverted models for WS array.

Steeper anomaly gradient can indicate more distinct cavity boundaries, while the gentler anomaly gradient limits the inference of cavity boundaries (Figs. 6 & 7).

Conclusions

At deeper depths, inverted models showed a reduction in model resolutions, overestimation in anomaly sizes, and deviation in anomaly positions, which can create ambiguity in resistivity model interpretations.

DD array is the most appropriate. PD and WS arrays are adequate while PP array is the least suitable for cavity studies.

Acknowledgements

Taiwan International Graduate Program (TIGP), Taiwan.
Minister of Science and Technology (MOST) grant 104-2611-E-008-004-MY2, Taiwan.
Earthquake-Disaster Risk Evaluation and Management Centre, Featured Areas Research Centre Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

References

Geophys. Prospe. 52.