Role of surface density and air-sea fluxes on the production of deep waters in the eastern subpolar gyre

Tillys Petit, M. Susan Lozier, Simon A. Josey and Stuart A. Cunningham

Lozier et al. (2017)  
Lozier et al. (2019)
What mechanism is responsible for producing deep waters in the eastern subpolar North Atlantic?

Strong and variable overturning is observed in the Irminger and Iceland basins in comparison to the overflow transports at the Greenland-Scotland Ridge.
Atlantic Subpolar Gyre deep water is formed primarily in the Irminger and Iceland basins by local buoyancy forcing

The transformation at the AMOC isopycnal matches remarkably well with our two estimations of overturning for the Upper Layer and Lower Layer

What drives the strength and spatial pattern of the variance in transformation?

Petit et al. (2020)
Highly variable surface area of SPMW over 40 years

Two variables are key to transformation estimates: the air-sea fluxes \((Q, E, P)\) and the surface densities \((\sigma)\)

\[
F(\sigma^*) = \frac{1}{\Delta\sigma} \int \left[ -\frac{\alpha}{C_P} Q + \beta \frac{S}{1 - S} (E - P) \right] \Pi(\sigma) \, dx \, dy
\]

\[
\Pi(\sigma) = \begin{cases} 
1 & \text{for } |\sigma - \sigma^*| \leq \frac{\Delta\sigma}{2} \\
0 & \text{elsewhere}
\end{cases}
\]

For \(\Delta\sigma = 27.3 - 27.5\) kg m\(^{-3}\)
- Mean surface area of \(3.67 \times 10^{11}\) m\(^2\)
- Standard dev. of \(1.53 \times 10^{11}\) m\(^2\)
Do air-sea fluxes play a major role in determining the strength and spatial pattern of the transformation?

- The buoyancy flux and the surface area are both strongly related to the SPMW transformation over the Iceland Basin;

- However, the spatial distribution of the variance in buoyancy flux does not match the variance in SPMW transformation.
The variance in SPMW transformation is primarily driven by the surface density

The variance in SPMW transformation are estimated with [1] variable surface density ($D$) and air-sea fluxes ($F$); [2] climatological surface density and variable air-sea fluxes; [3] variable surface density and climatological air-sea fluxes.

[1] $D' F'$
[2] $\langle D \rangle F'$
[3] $D' \langle F \rangle$

Results
Unusually large SPMW transformation in winter 2014–2015

Highest transformation (23.9 Sv) in winter 2014–15 since 1980

Relatively strong buoyancy anomaly in winter 2014–15

Unusually large surface area of SPMW in winter 2014–15

Results

EGU21 – Petit et al. – 3500
Unexpected key role of the surface density on the overturning variability over the eastern subpolar gyre

- The interannual variability of this transformation is largely driven by the variance in the surface density, as expressed by the outcropping area for the associated isopycnals;

- Unusual conditions in both air-sea fluxes and surface area of SPMW during winter 2014–2015 induced the largest SPMW transformation in 40 years

➢ What sets the surface density over the Iceland Basin?
What sets the surface density over the Iceland Basin?

The air-sea fluxes explain only \(~30\%\) of the surface density change in winter over the Iceland Basin.

- The rest of the \(~70\%\) reflects other mechanisms that can impact the surface density, including changes in ocean circulation and wind-driven upwelling.
What sets the surface density over the Iceland Basin?

- The source area is mainly localized over the Reykjanes Ridge and the Rockall Plateau during “small” winters;
- The isopycnal 27.3 kg m\(^{-3}\) shifts north of the Charlie-Gibbs Fracture Zone during “small” winters;

> “small” or “large” surface areas cannot be attributed to specific positions of the gyre
What sets the surface density over the Iceland Basin?

Grist et al. (2016) analyzed the long-term impacts of anomalous SPMW formation on regional climate and found that some of it will undergo reemergence the following autumn/winter.