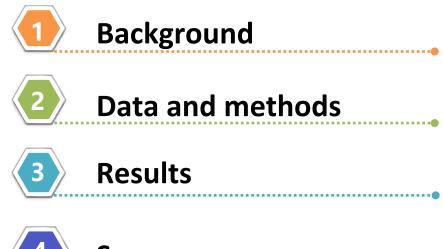


# How does the South Asian summer monsoon anomaly influence the interannual variations in precipitation over the South-Central Tibetan Plateau

Yanxin Zhu<sup>1,2</sup>, Yan-Fang Sang<sup>1</sup>, Deliang Chen<sup>3</sup>, Bellie Sivakumar<sup>4</sup> and Donghuan Li<sup>1</sup>

<sup>1</sup>Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences, Beijing, China.


<sup>2</sup>University of Chinese Academy of Sciences, Beijing, China.

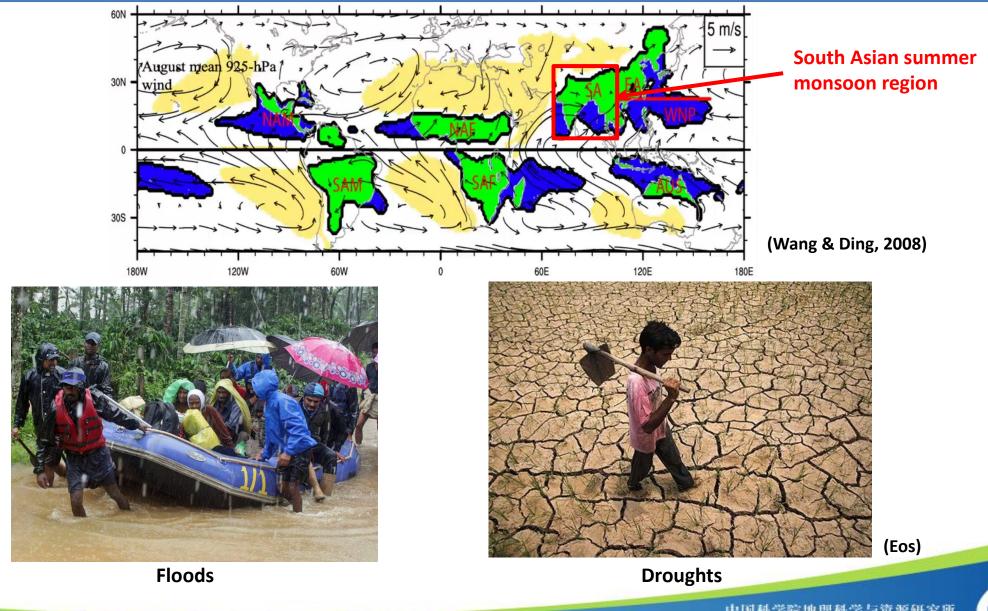
<sup>3</sup>Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.

<sup>4</sup>Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

2021.4.27

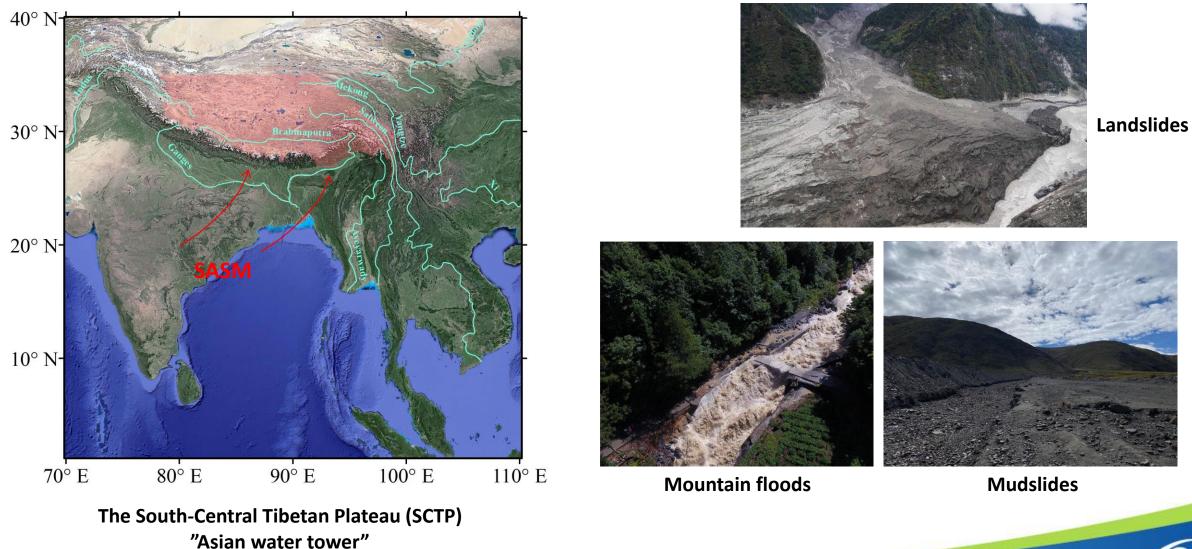











### The South Asian summer monsoon (SASM) system anomaly causes precipitation extremes and serious disasters

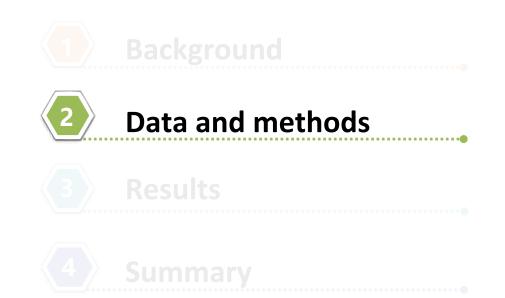




Sustainable freshwater management and water disasters mitigation over the SCTP is of vital importance






(1) How do the **onset and demise** of the SASM control the **interannual variations** in precipitation over the SCTP?

(2) Is there an **asymmetric effect** of the SASM on SCTP precipitation between its onset and demise, and between its early and late onset (demise)?

(3) What are the **underlying mechanisms** that are responsible for the variations in interannual precipitation?

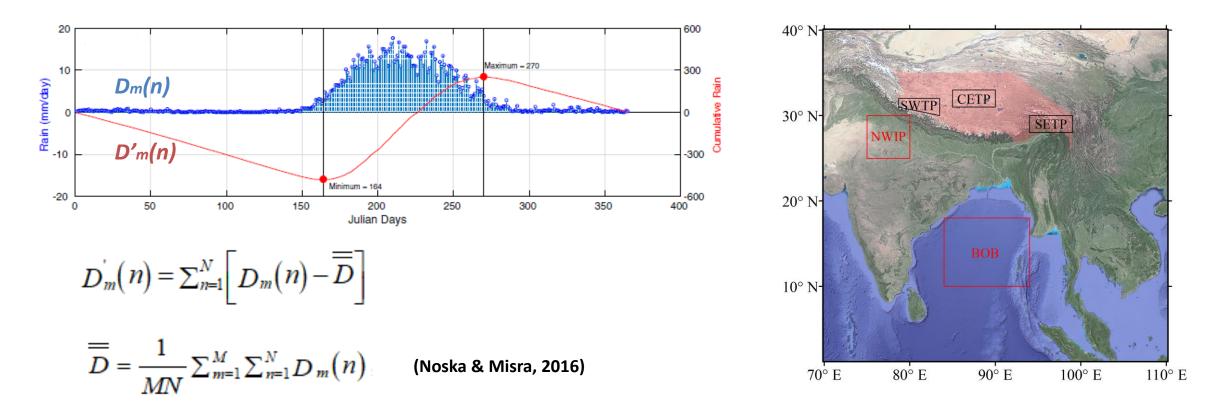








| Dataset   | Spatial Resolution                        | Periods   | Data sources                                                                        |  |  |  |  |
|-----------|-------------------------------------------|-----------|-------------------------------------------------------------------------------------|--|--|--|--|
| СМА       | 80 stations                               | 1979-2015 | http://data.cma.cn/                                                                 |  |  |  |  |
| APHRODITE | $0.25^{\circ}$ $	imes$ $0.25^{\circ}$     | 1951-2015 | http://www.chikyu.ac.jp/precip/products.html                                        |  |  |  |  |
| СМАР      | $2.5^{\circ} \times 2.5^{\circ}$          | 1979-2015 | https://www.esrl.noaa.gov/psd/data/gridded/data.cma<br>p.html                       |  |  |  |  |
| Chen      | $0.5^\circ 	imes 0.5^\circ$               | 1961-2010 | https://rcg.gvc.gu.se/data/ChinaPrecip/index.htm                                    |  |  |  |  |
| Zhao      | $0.5^{\circ} \times 0.5^{\circ}$          | 1961-2015 | http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_<br>CHN_PRE_DAY_GRID_0.5.html   |  |  |  |  |
| CRU       | $0.5^\circ 	imes 0.5^\circ$               | 1901-2015 | https://crudata.uea.ac.uk/cru/data/hrg/                                             |  |  |  |  |
| ERA5      | $0.25^\circ 	imes 0.25^\circ$             | 1979-2015 | https://www.ecmwf.int/                                                              |  |  |  |  |
| GLDAS     | 0.25°×0.25°                               | 1948-2015 | https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_<br>M_V2.0/summary?keywords=GLDAS |  |  |  |  |
| GPCP      | 2.5° ×2.5°                                | 1979-2015 | https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp<br>.html                       |  |  |  |  |
| JRA55     | $0.562^\circ$ $	imes$ $0.562^\circ$       | 1958-2015 | https://rda.ucar.edu/datasets/ds628.1/                                              |  |  |  |  |
| NCEP-NCAR | 1.875 $^{\circ}$ $	imes$ 1.904 $^{\circ}$ | 1948-2015 | https://www.esrl.noaa.gov/psd/data/gridded/data.ncep<br>.reanalysis.derived.html    |  |  |  |  |
| SM        | $0.5^{\circ} \times 0.5^{\circ}$          | 2007-2015 | http://hydrology.irpi.cnr.it/download-area/sm2rain-<br>data-sets/                   |  |  |  |  |
| TRMM 34B3 | 0.25° ×0.25°                              | 1998-2015 | https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/su<br>mmary?keywords=TRMM          |  |  |  |  |
| IGSNRR    | 0.25°×0.25°                               | 1952-2013 | http://hydro.igsnrr.ac.cn/public/vic_outputs.html                                   |  |  |  |  |


### Data: 1979-2015

- Daily **APHRODITE** precipitation data
- Monthly ERA5 reanalysis data

(Zhu & Sang, 2018)



## Definition of onset and demise times of the SASM system



**Onset date (***OD***):** the minimum value of  $D'_m(n)$ , after the first four months and before the last three months of a year; **Demise date (***DD***):** the maximum value of  $D'_m(n)$ , after OD;

Season length (SL): the days from the OD to DD;

Seasonal precipitation (SP): the total amount of precipitation the between the OD and DD.



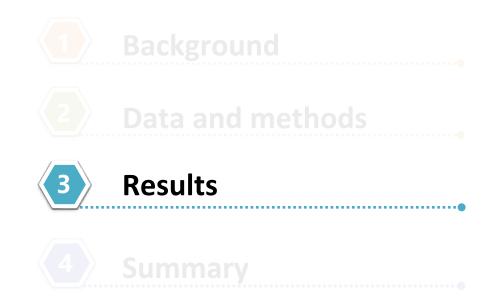
# **Moisture budget analysis**

Moisture budget equation

$$P = -\frac{1}{g\rho} \int_{0}^{p_{s}} \nabla \cdot (Vq) dp - \frac{1}{g\rho} \int_{0}^{p_{s}} \frac{\partial (\omega q)}{\partial p} dp + E$$

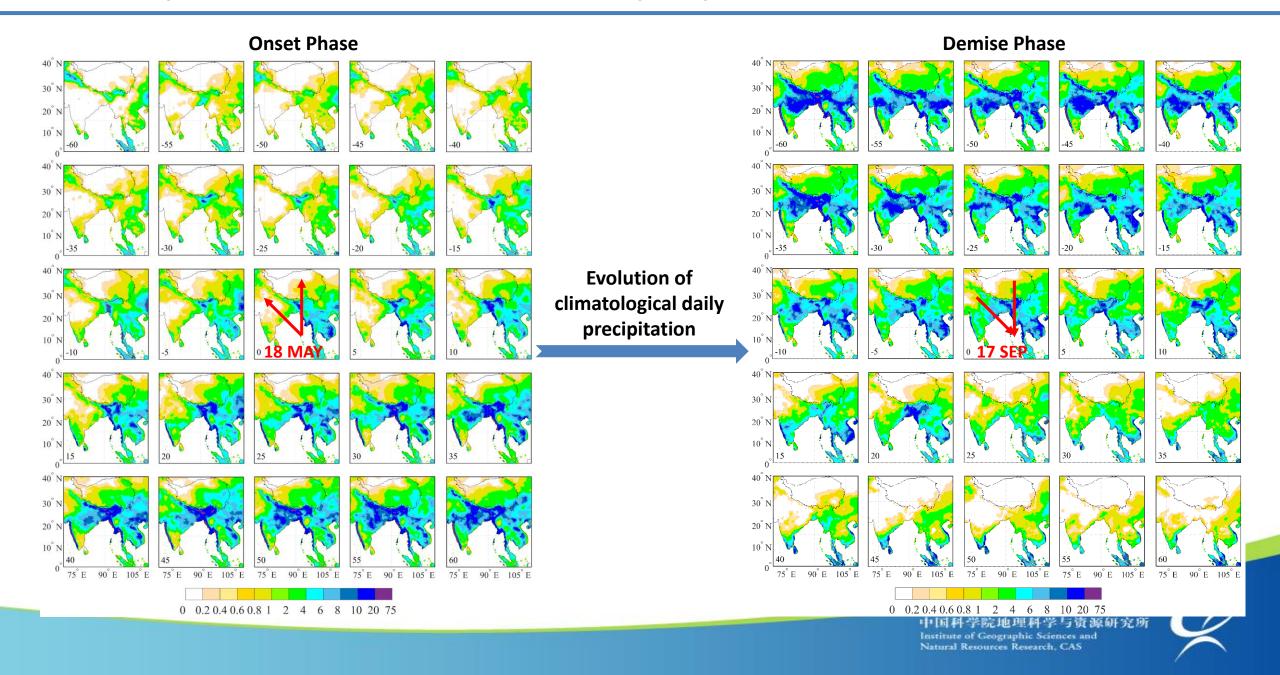
Decomposition

$$P' = -\frac{1}{g\rho} \int_{0}^{p_{s}} \nabla \cdot \left(\overline{V}q'\right) dp - \frac{1}{g\rho} \int_{0}^{p_{s}} \nabla \cdot \left(V'\overline{q}\right) dp - \frac{1}{g\rho} \int_{0}^{p_{s}} \frac{\partial(\overline{\omega}q')}{\partial p} dp - \frac{1}{g\rho} \int_{0}^{p_{s}} \frac{\partial(\omega'\overline{q})}{\partial p} dp + E'$$

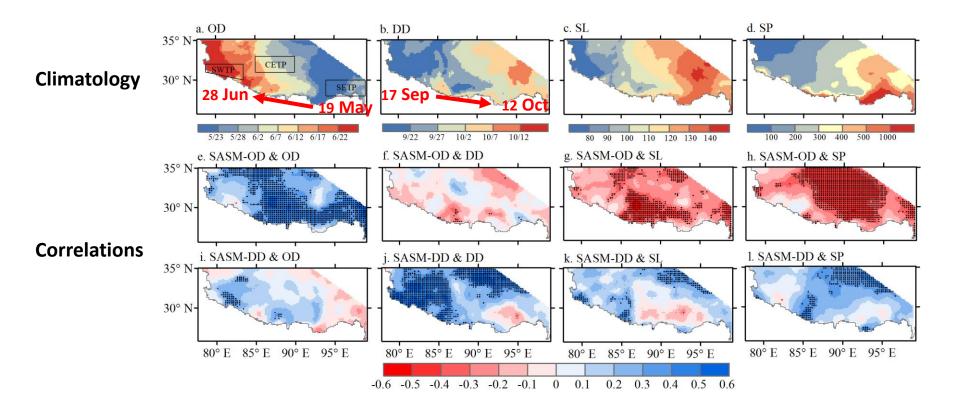

Precipitation Horizontal thermodynamic component Horizontal dynamic component Vertical thermodynamic component

Vertical dynamic component




中国科学院地理科学与资源研究所 Institute of Geographic Sciences and Natural Resources Research, CAS

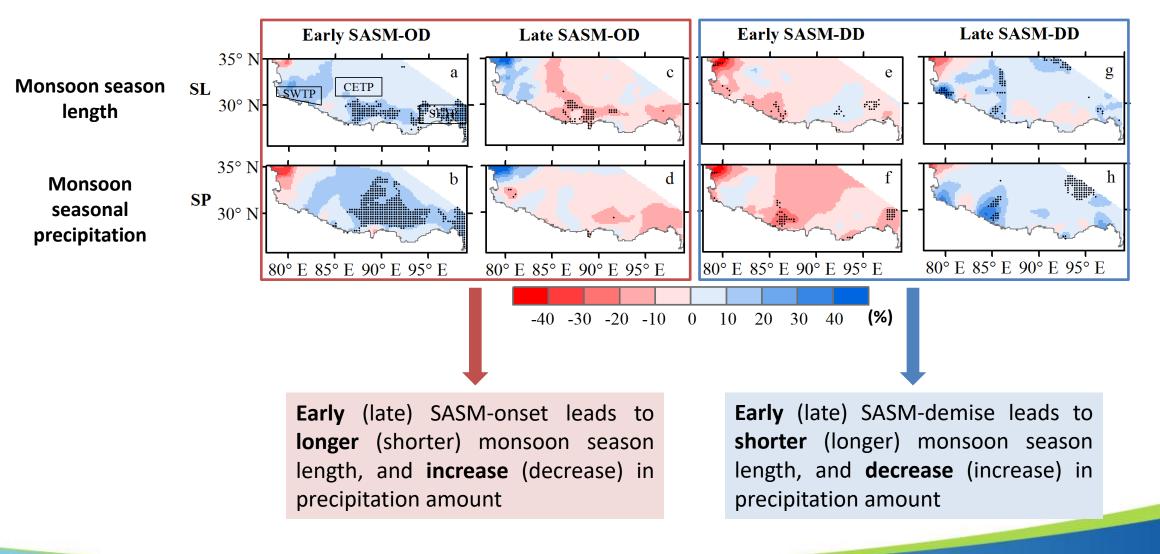
Evaporation






### The SASM system controls the evolution of the precipitation over the SCTP




### Associations between the interannual variations of the SASM and precipitation over the SCTP



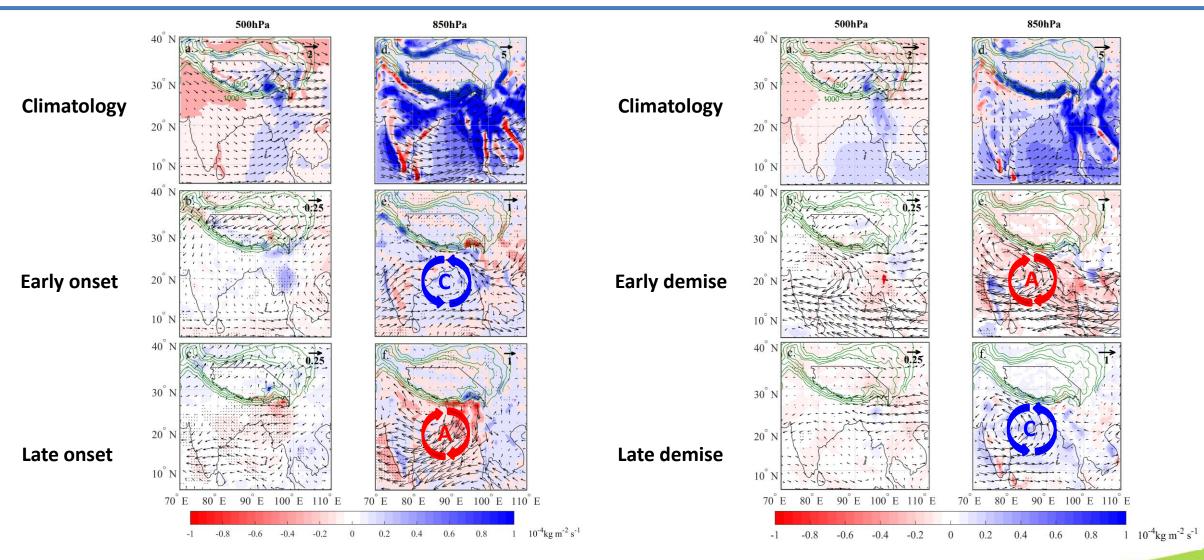
- The propagation, duration, and total amount of precipitation over the SCTP is closely connected with the evolution of SASM, but with **significant spatial heterogeneity**.
- The associations of interannual variations in precipitation with the SASM-onset (SASMdemise) is stronger in the SETP and CETP (SWTP and CETP).



### The anomalous SASM causes spatial heterogeneous and asymmetric precipitation changes over the SCTP

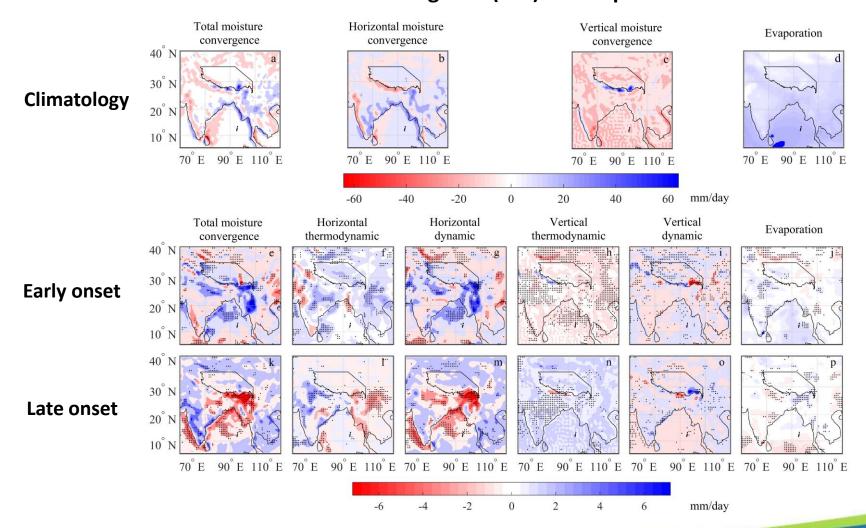


#### **Composite difference**




### The anomalous SASM causes spatial heterogeneous and asymmetric precipitation changes over the SCTP

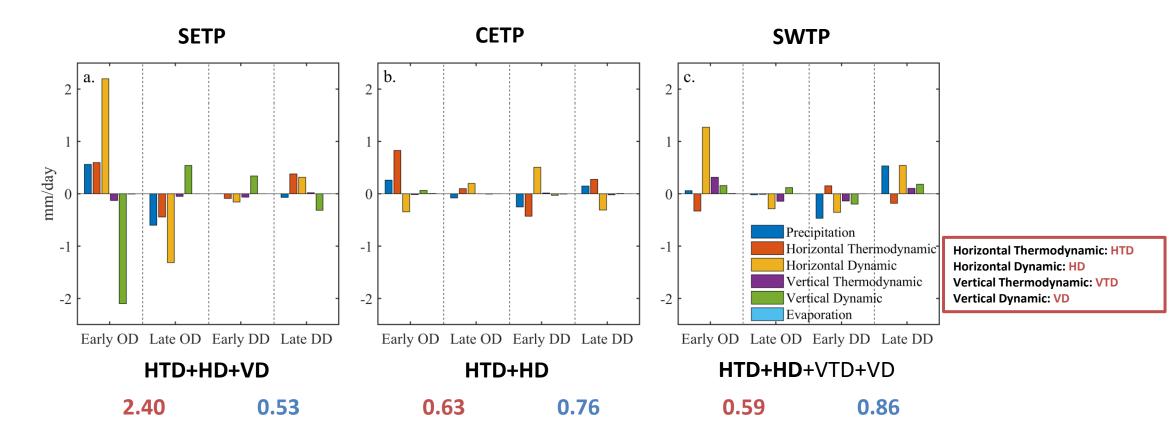
| Region | Phase        | Onset Date           |                           | Demise Date           |                           | Monsoon Season Length |                        | Seasonal Precipitation |                        |        |                |
|--------|--------------|----------------------|---------------------------|-----------------------|---------------------------|-----------------------|------------------------|------------------------|------------------------|--------|----------------|
|        |              | Date<br>(Julian Day) | Absolute Change<br>(Days) | Date<br>(Julian Day)  | Absolute Change<br>(Days) | Days                  | Relative Change<br>(%) | Amount<br>(mm)         | Relative Change<br>(%) |        |                |
| SETP   | Climatology  | 140<br>(19 May)      |                           | 274<br>(30 September) |                           | 135                   |                        | 667.19                 |                        | 23.41% |                |
|        | Early Onset  | 130                  | -10                       | 275                   | 1                         | 145                   | 7.96                   | 741.83                 | 11.19                  |        |                |
|        | Late Onset   | 150                  | 10                        | 275                   | 1                         | 125                   | -7.36                  | 585.63                 | -12.22                 |        | <b>13.0</b> 5% |
|        | Early Demise | 141                  | 1                         | 273                   | -1                        | 133                   | -1.29                  | 628.41                 | -5.81                  |        |                |
|        | Late Demise  | 138                  | -2                        | 282                   | 8                         | 144                   | 6.89                   | 715.49                 | 7.24                   |        |                |
| СЕТР   | Climatology  | 153<br>(1 June)      |                           | 267<br>(23 September) |                           | 114                   |                        | 226.22                 |                        | 15.91% |                |
|        | Early Onset  | 143                  | -9                        | 262                   | -4                        | 119                   | 4.69                   | 259.29                 | 14.62                  |        |                |
|        | Late Onset   | 155                  | 3                         | 267                   | 0                         | 111                   | -2.32                  | 223.30                 | -1.29                  |        |                |
|        | Early Demise | 152                  | -1                        | 264                   | -3                        | 112                   | -1.44                  | 194.32                 | -14.10                 |        | 21.50%         |
|        | Late Demise  | 153                  | 0                         | 275                   | 8                         | 122                   | 7.34                   | 242.96                 | 7.40                   |        |                |
| SWTP   | Climatology  | 169<br>(17 June)     |                           | 261<br>(17 September) |                           | 91                    |                        | 287.43                 |                        | 1.96%  |                |
|        | Early Onset  | 159                  | -11                       | 258                   | -1                        | 100                   | 10.26                  | 301.13                 | 4.76                   |        |                |
|        | Late Onset   | 165                  | -4                        | 261                   | 1                         | 96                    | 5.63                   | 295.48                 | 2.80                   |        | 29.86%         |
|        | Early Demise | 155                  | -14                       | 236                   | -24                       | 80                    | -11.30                 | 260.04                 | -9.53                  |        |                |
|        | Late Demise  | 166                  | -3                        | 279                   | 19                        | 113                   | 24.40                  | 345.87                 | 20.33                  |        |                |




### Changes of WV generated by anomalous SASM activities dominate the interannual SCTP-precipitation variations

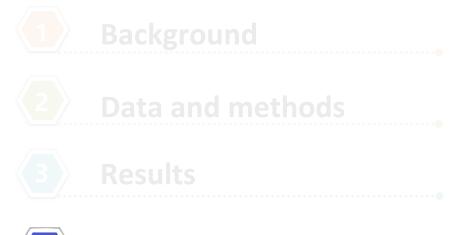


The horizontal (vectors) and vertical (shadings) water vapor (WV) flux






#### Moisture convergence (MC) decomposition




### Spatial heterogeneous and asymmetric changes of the MC components explain the SASM effects on precipitation



**Large** (small) changes in the MC reasonably explain the **larger** (smaller) precipitation anomalies in the anomalous SASM-onset years versus those in the SASM-demise years in the **SETP** (CETP and SWTP).









- The water vapor transport and its changes generated by the anomalous **SASM** activities, combined with the **topographic effect**, control the precipitation **propagation** and its **anomaly** across the SCTP.
- There are **asymmetric effects** of the SASM with topography on the precipitation between onset and demise, and between early and late onset (demise) of the SASM, along with evident spatial heterogeneity.
- The results presented here would be helpful to improve our understanding of the SASMprecipitation relationship over the SCTP and guide the **freshwater resources management and water-related disasters mitigation** in this region and its surrounding areas.





# Thank you!

Email: zhuyx.18s@igsnrr.ac.cn

Zhu, Y., Sang, Y. F., Chen, D., Sivakumar, B., & Li, D. (2020). Effects of the South Asian summer monsoon anomaly on interannual variations in precipitation over the South-Central Tibetan Plateau. Environmental Research Letters, 15(12), 124067.

Zhu, Y. X., & Sang Y. F. (2018). Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau [in Chinese]. Progress in Geography, 37(11), 1533–1544.

