

Mark Thyer

High quality daily subseasonal streamflow forecasts? Ask MuTHRE!

Aim: Produce daily subseasonal (0-30 day) streamflow forecasts with high quality performance for a range of lead times and aggregation scales (daily to monthly)

encouraged

Key Innovation

MuTHRE: Multi-temporal hydrological residual error

model addresses a range of hydrological errors:

- Seasonality: Errors vary systematically by month
- **Dynamic Biases:** Errors vary by year, due to hydrological \bullet non-stationarity
- **Extreme errors:** Occasional very large errors, poorly ٠ represented by common Gaussian distribution

using rainfall-runoff

modelling

(ACCESS-S + Rainfall Post-Processing)

Dynamic Biases Seasonality Persistence Mixed Gaussian for extreme errors Post-processing of daily

streamflow forecasts using probabilistic residual error models

Key Outcomes

 Consistent high forecast quality for range of time scales (daily-monthly), lead times, months & years

See paper for more details

McInerney et al, 2020, WRR: Multi-temporal Hydrological Residual Error Modeling for Seamless Subseasonal Streamflow Forecasting

https://doi.org/f8k5

ofADELAIDE

School of Civil, Environmental and Mining Engineering

Do you want high quality subseasonal daily streamflow forecasts? Ask MuTHRE!

Assoc. Prof. Mark Thyer Dr David McInerney Prof Dmitri Kavetski

Prof. George Kuczera

Science and Innovation/Research WATER

Outline

- Motivation and Aims
- Overview and Key Innovations of Subseasonal Streamflow Forecasting System using MuTHRE
- Forecast Evaluation Approach
- Key Outcomes
- Summary: Features and Benefits

Australian Bureau of Meteorology: Water Information Products

Key Gaps in Current Capability: Seamless Subseasonal Daily Streamflow Forecasts

- Daily forecasts for 0-30 day lead time
- Seamless forecasts with consistent quality at range of time scales (daily/weekly/monthly)

Subseasonal Streamflow Forecasting: Motivation

Feature and Benefits	Seven Day Streamflow Forecasts	Seasonal Streamflow Forecasts	Subseasonal Streamflow Forecasts
Monthly forecasts for 1-3 months lead time			
Subdaily forecasts for up to 7 days for flood purposes		×	×
High quality forecasts at multiple sites Australia wide			?
Seamless daily forecasts for 0-30 day lead time	×	×	
Potential integration into real-time river-system decision making tools (e.g. eWater Source)			
Enable basin managers to quantify forecast risks of high/low flow daily events		×	

Subseasonal forecasts will lead to 'step change' in the adoption of forecasts byThe University of Adelaidekey water agenciesSlide 5Slide 5

Seamless Site Forecasts: Aims and Outcomes

- Motivation and Aims
- Overview and Key Innovations of Subseasonal Streamflow Forecasting System using MuTHRE
- Forecast Evaluation Approach
- Key Outcomes
- Summary: Features and Benefits

Subseasonal Streamflow Forecasting System

Q

Deterministic Streamflow

Daily Rainfall Forecasts (ACCESS-S + Rainfall Post-Processing)

Daily Rainfall=>Streamflow using rainfall-runoff modelling

Post-processing of daily streamflow forecasts using probabilistic residual error models

Observed

t

Probabilistic Streamflow

Forecast daily streamflow

Q: Is it important to account for hydrological residual errors for reliable streamflow forecasting?
A: Yes, very!! (key point of presentation)

Rainfall forecasts are reliable due advances in ACCESS-S and rainfall post-processing

Key features of Residual Errors in Hydrological Modelling

Residual errors are predictive errors from hydrological model, Residual Error = Qobs - Qhydro

McInerney, D., M. Thyer, D. Kavetski, J. Lerat, and G. Kuczera (2017), Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors, *Water Resour Res*, 53(3), 2199-2239,

Evin, G., M. Thyer, D. Kavetski, D. McInerney, and G. Kuczera (2014), Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity, *Water Resour Res, 50*(3), 2350-2375, doi:

Key Innovations: MUTHRE Model

• Commonly represented in most residual error models

- Previous studies showed importance of individual components
- MUTHRE first time all components combined and used for subseasonal streamflow forecasting

Subseasonal Streamflow Forecasts => using MUTHRE Model

- First time all components used for subseasonal streamflow forecasting
- Compared with forecasts using Baseline model instead of MUTHRE

The University of Adelaide

Will the MUTHRE be able to achieve seamless forecasts?

- Motivation and Aims
- Overview and Key Innovations of Subseasonal Streamflow Forecasting System using MuTHRE
- Forecast Evaluation Approach
- Key Outcomes
- Summary

Forecast Evaluation: What makes a good probabilistic forecast?

Water management is about "balancing risks" of high/low flow events (floods/droughts)

"High quality" probabilistic forecasts are:

Reliable: Forecast probabilities are reliable (i.e. 90% limits are "truly" 90% cf with observations)

Sharpness: Width of uncertainty in forecast (aka forecast is "precise")

"Climatology": over-estimates risks => missed opportunities to take advantage of events

"Over-confident": under-estimate risks, => can't manage 'surprising' high/low flows

Reliable and sharp forecasts:

=> Accurate risks of high/low flow events

=> Better management decisions

=> Greater industry uptake

Forecast Evaluation Approach: Comprehensive and Systematic

- Range of commonly used metrics to capture key aspects of forecast performance
 - Reliability, Sharpness, Volumetric Bias, CRPS
- Focus on reliability as forecast probabilities are important for risk-based decisions
- NEW: Range of time scales/stratified evaluations to assess performance consistency
 - Daily and Monthly Time Scales
 - Stratified by Lead Time/Months/Years
- Focus on performance consistency important for seamless forecasting
 - Industry: Enables a single forecasting product to be used for multiple decisions
 - Bureau: Simpler to maintain a single forecasting product with multiple uses

Seamless Site Forecasts: Evaluated on High Impact Test Catchments

Name	Area (km ²)	
Murray River at Biggara	1257	
Jingellic Creek at Jingellic	390	
Cudgewa Creek at Berringama	351	
Gibbo River at Gibbo Park	390	
Delatite River at TongaBridge	368	
King Parrot Creek at Flowerdale	181	
Seven Creeks river at Kialla West	1513	
Seven at D/S Polly McQuinns Weir	148	
Hughes Creek at Tarcombe Rd	474	
Acheron River at Taggerty	630	
Goulburn River at Dohertys	700	

Key Unregulated catchments in Upper Murray (4) and Golburn Rivers (7)

- Motivation and Aims
- Overview and Key Innovations of Subseasonal Streamflow Forecasting System using MuTHRE
- Forecast Evaluation Approach
- Key Outcomes
- Summary: Features and Benefits

Key Outcomes

- 1. Compare subseasonal streamflow forecasts MUTHRE vs BASELINE
- 2. Stratified by lead time/months/years
- 3. Present selected key results, for further details see journal paper

Water Resources Research

Research Article

Multi-temporal hydrological residual error modelling for seamless sub-seasonal streamflow forecasting

David McInerney 🗙, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Narendra Tuteja, George Kuczera

First published: 01 September 2020 | https://doi.org/10.1029/2019WR026979

MUTHRE shows Large improvements in reliability for short lead times

MUTHRE shows large improvements in reliability for dry months

MUTHRE shows large improvements in reliability for drought years

MUTHRE shows improvements in sharpness

• MUTHRE forecasts are consistently sharper than baseline for all lead times

MuTHRE provides seamless forecasting capabilities

- Forecast of cumulative streamflow over two week period for typical catchment
 - Based on daily time series of forecasts

Slide 22

lead time (days)

MUTHRE: Which components contributes to the performance improvements?

- Seasonality ?
- Dynamic Biases (due to hydrological non-stationarity) ?
- Extreme errors poorly represented by Gaussian Distribution ?

Key Contributors to Performance Improvements

High = Practically significant improvement (>20% difference) achieved in *majority* of lead times/months/years Low = Statistically significant improvements (<20% difference) achieved in *majority* of lead times/months/years None = No practical or statistically significant improvement

Summary

Features

- MuTHRE model delivers consistently high forecast quality for range of time scales/lead times/months/years
- Achieves seamless subseasonal streamflow forecasts for 0 to 30 day lead time
- Significantly improved reliability for short lead times, dry months and drought years
- Much sharper than climatology
- Demonstrated results on high-impact catchments in Upper Murray/Goulburn Rivers

Water Resources Research

Research Article

Multi-temporal hydrological residual error modelling for seamless sub-seasonal streamflow forecasting

David McInerney . Mark Thyer, Dmitri Kavetski, Richard Laugesen, Narendra Tuteja, George Kuczera First published: 01 September 2020 | https://doi.org/10.1029/2019WR026979

Benefits

- Enables integration of daily forecasts into river system models
- Potential for step-change increase in use of forecasts by water industry
- Highlights importance of hydrological modelling and comprehensive treatment of uncertainty for reliable streamflow forecasts.
- Innovations are independent of hydrologic model/rainfall forecasts
- Can be applied to other hydrological/land surface models.
- Easily take advantage of future improvements in rainfall forecasts
- Questions? Email: mark.thyer@adelaide.edu.au