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Introduction

» Seismic anisotropy which has been observed in worldwide subduction zone,
may be caused by the lattice preferred orientation (LPO) of elastically
anisotropic minerals (Karato, 2008; Mainprice and lldefonse, 2009).
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Introduction

» Many hydrous minerals are known to be elastically very
anisotropic (Mainprice and lldefonse, 2009).

» The LPO of hydrous mineral aggregates may cause a significant
seismic anisotropy in subduction zones (Jung, 2017; Lee et al,
2020).

» Chloritoid commonly occurs in greenschist- to eclogite-facies
metamorphic rocks including the subducting oceanic crust and
overlying metapelites, however both the elasticity and the LPO
of chloritoid have been unknown.



Geological background of samples
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Materials and Method: sample description

» Grt-Cld-Tlc schists from Makbal
Complex (samples #15R, #10-16,
#12-52).

» Chloritoid 10 — 25 vol.%

» Elongation of grains parallel or
subparallel to the lineation.




Methods

» Measurement of the LPO

using electron backscattered diffraction
(EBSD) attached to JSM-6380 SEM.

» Plotting the LPO data and
calculation of the LPO-induced
seismic anisotropy using the
Matlab-based MTEX software
(Mainprice et al., 2008).

JSM-6380 SEM with HKL EBSD system in SNU
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Results: elastic anisotropy of single-crystal chloritoid
(new result in this study)

Formula : Mg,Al,S1,0,,(OH),
Monoclinic magnesiochloritoid
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Results: seismic velocities and anisotropies of

polycrystalline chloritoid

i

X
@ Vp (km/s)  AVs (%) Vs1 poI Vs1 (km/s)

10-16
Cld

12-52
Cld

09

AVp=103% ma AM 181 %

R)G\

91 03 126

AVp 90% ma AV 126/

89 01

AVp 53/ max AV 9.7/

Vs2 (km/s)

LPO-induced seismic
anisotropy of Cid

>>AVp = 5— 10%
»Max AVs = 10 - 18 %




Pressure (GPa)
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Results: stability and modal abundance of

C
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» Within the given P-T
conditions, the highest

amount of chloritoid was
28 vol.%

» Good agreement with
the observed amount of
chloritoid in the samples.

» Alonﬁ cold subduction
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the maximum chloritoid
amount reaches 26
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Discussion: chloritoid stability
and its implication for seismic
anisotropy in subduction zones

» Chloritoid was found to be stable under
high-pressure conditions ranging from the
blueschist to the eclogite facies.

» In steeply dipping subduction zones,
chloritoid is likely to be stable along the slab-
mantle at a depth range between 80 and 120
km.
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Discussion: chloritoid stability and its
implication for seismic anisotropy in subduction

Zones

»The effect of the chloritoid
LPO on the trench-parallel
seismic anisotropy would be
Important in cold and high-
angle subduction zones.
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(Lee et al., 2021)
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Discussion: effect of
chloritoid LPO on
seismic anisotropy of the
Grt-Cld-Tlc schist

Delay time of S-wave
» Chloritoid only: 0.3 s
»Talc only: 0.5 s

»Wholerock + noCld:03s
»Wholerock + Cld:04 s

(Lee et al., 2021)
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Discussion: effect of hydrous minerals in

blueschist-facies rock
Y }/ (Lee et al., 2021)
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Subduction zones are often characterized by the presence of strong trench-parallel
seismic anisotropy and large delay times. Hydrous minerals, owing to their large elastic
anisotropy and strong lattice preferred orientations (LPOs), are often invoked to explain
these observations. However, the elasticity and the LPO of chloritoid, which is one of
such hydrous phases relevant in subduction zone settings, are poorly understood. In
this study, we measured the LPO of polycrystalline chloritoid in natural rock samples,
obtained the LPO-induced seismic anisotropy, and evaluated the thermodynamic
stability field of chloritoid in subduction zones. The LPO of chloritoid aggregates
displayed a strong alignment of the [001] axes subnormal to the rock foliation, with a
girdle distribution of the [100] axes and the (010) poles subparallel to the foliation. New
elasticity data of single-crystal chloritoid showed a strong elastic anisotropy of chloritoid
with 47% for S-waves (Vg) and 22% for P-waves (Vp), respectively. The combination
of the LPO and the elastic anisotropy of the chloritoid aggregates produced a strong
S-wave anisotropy with a maximum AVg of 18% and a P-wave anisotropy with an
AVp of 10%. The role of chloritoid LPO in seismic anisotropy was evaluated in natural
rock samples and a hypothetical blueschist. Our results indicate that the strong LPO
of chloritoid along the subduction interface and in subducting slabs can influence the
trench-parallel seismic anisotropy in subduction zones with “cold” geotherms.



Summary

» Elastic constants of chloritoid was calculated for the first time.
» The LPOs of chloritoid in natural schist samples were measured.

» The results showed AVp and AVs of chloritoid as 5 - 21 % and 10 — 49 %,
respectively.

» Thermodynamic stability and modal abundance of chloritoid are re-
evaluated. The results showed that chloritoid can be stable up to
blueschist-eclogite facies conditions.

» The S-wave anisotropy of chloritoid could be large and important. The
LPO of chloritoid needs to be considered to understand seismic anisotropy
of cold subduction zones.



