

Spatial and temporal patterns of snowmelt refreezing in a Himalayan catchment

Sanne Veldhuijsen¹, R. J. de Kok¹, E. E. Stigter¹, J. F. Steiner¹, T. Saloranta¹ and W. W. Immerzeel¹ (¹Utrecht University, ²Norwegian Water Resources and Energy Directorate).

• Recent progress has been made in quantifing snowmelt in the Himalaya. However, translating snowmelt to snowmelt runoff is not as simple as often thought

Why not?

• The temperature fluctuates a lot around the freezing point, and therefore the snow melts during the day, and then refreezes during the night. This prevents melt to escape as runoff

What do we know about snowmelt refreezing so far?

- Important in Antarctica, the Arctic, Sub-Arctic and in alpine areas (up to 100% of the melt)
- Importance depends on elevation and air temperature

And in the Himalaya?

- Saloranta et al. (2019): 36% of the melt in a catchment refreezes Elevation profiles of all year and non-monsoon season
- Lund et al. (2020): Remotely sensed diurnal melt-refreeze cycles

Saloranta, T., Thapa, A., Kirkham, J. D., Koch, I., Melvold, K., Stigter, E., (2019). A model setup for mapping snow conditions in High-Mountain Himalaya. *Frontiers in Earth Science*, 7, 129.

Lund, J., Forster, R. R., Rupper, S. B., Deeb, E. J., Marshall, H. P., Hashmi, M. Z., & Burgess, E. (2020). Mapping snowmelt progression in the Upper Indus Basin with synthetic aperture radar. *Frontiers in Earth Science*, *7*, 318.

What do we aim to explore (in more detail) on a catchment scale?

Model

seNorge snow model (Saloranta et al. 2019)

Refreezing: based on Stefan's Law

The snowpack is cooled from the snowatmosphere interface in downward direction. During this cooling, all liquid water is assumed to refreeze, thereby forming a refreezing front that penetrates downwards, during which latent heat is released. The growth of the refreezing front is calculated as:

Growth refreezing front =
$$\sqrt{\frac{2\kappa_s}{\rho_{lw}L}(-T_a)\Delta t_s}$$

- Single layer
- Enhanced temperature-index
- Albedo decay
- Compaction
- Refreezing

Study area

Settings:

- 100 m resolution
- Hourly timestep

Meteorological forcing

Combining a network of 32 meteorological stations with high-resolution simulations

- **Temperature:** Extrapolated observed temperature with calculated lapse rates
- **Precipitation:** WRF precipitation scaled with observations
- **ISWR:** Calculated clear-sky radiation corrected with WRF transmissivity.

Results & discussion

Elevation:

Refreezing generally increases with elevation

Colder + more snowfall

- 21% of the snowmelt refreezes (hourly timestep) → 122 mm/year
- Only 5% of the snowmelt refreezes (19 mm/year) when a daily timestep is used

Important to use sub-daily timesteps to capture diurnal melt-refreeze cycles

Refreezing melt ratio: minimum around 5,250 – 5,750 m a.s.l.

- •
- Thicker snowpack \rightarrow more insulation Melts during monsoon \rightarrow less temperature fluctuations due to **clouds** •

Seasonal variability:

< 5,750 m a.s.l.

• Dominant forcing: SWE and diurnal temperature fluctuations

> 5,750 m a.s.l.

- High amounts of refreezing
- Dominant forcing: seasonal temperature fluctuations \rightarrow seasonal melt-refreeze cycles

Aspect:

- < 5,250 m a.s. l. refreezing is higher on north-facing slopes:
 - \rightarrow Snowpacks are too shallow to store the additional meltwater
 - \rightarrow This accelerates the depletion of the snowpack
 - \rightarrow This decreases the potential for refreezing

- > 5,250 m a.s.l. refreezing is higher on south-facing slopes:
 - \rightarrow Deeper snowpacks can store the additional meltwater
 - \rightarrow This increases melt-refreeze cycles

Intra-annual variability

- Intra-annual variability:
- Pre-monsoon (2013, 2019)
- Post-monsoon (2013)

Related to fluctuations in snowfall

• Important to use multi-year timeseries in refreezing assessments

Utrecht University

Refreezing [mm] Sensitivity [mm] Refreezing [mm] Sensitivity [mm] Refreezing [mm] Sensitivity [mm]

250

Future model improvements?

- Meltwater infiltration
- Cold content

Conclusions

- 21% of the snowmelt refreezes (hourly timestep)
- Only 5% when a daily timestep is used
- Strong **altitudinal seasonal** variability (most refreezing in pre- and post-monsoon)
- Aspect is important
- Very high elevation: **seasonal** melt-refreeze cycle
- Intra-annual variablity in the pre- and postmonsoon seasons related to snowfall

Any questions or thoughts? Feel free to send my an email: s.b.m.veldhuijsen@uu.nl