

UAV-based cm-scale mapping of biofilms and Chl-a patterns in glacial forefields using visible band ratios

¹Roncoroni, M., ¹Mancini, D., ²Kohler ,T.J., ¹Miesen, F., ¹Gianini, M., ²Battin, T.J., ¹Lane, S.N.

¹Institute of Earth Surface Dynamics (IDYST), University of Lausanne

²Stream Biofilm and Ecosystem Research Laboratory (SBER), École Polytechnique Fédérale de Lausanne

matteo.roncoroni@unil.ch

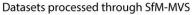
Introduction

Biofilms are involved in **multiple ecosystem processes** and claimed to be **potential ecosystem engineers** in glacial floodplains:

 The knowledge of their distributions through time is crucial for understanding development constraints and potential ecosystem engineering hotspots.

This biofilm paper aims track distributions (logistically) chl-a and concentrations (linearly) of an alpine glacier forefield over a 5-month period (56 single day datasets) by using visible band ratios derived from UAV-based SfM-MVS orthomosaics at 5 cm resolution.

Floodplain of the Glacier d'Otemma (Valais, Switzerland) - $\ensuremath{\mathbb{C}}$ Roncoroni M.

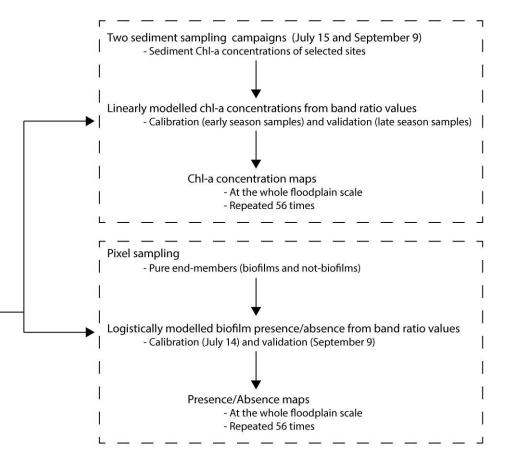


Methods

UAV-based imagery of the floodplain of the Glacier d'Otemma (VS, Switzerland)

- 56 single day datasets spanning from late June 2020

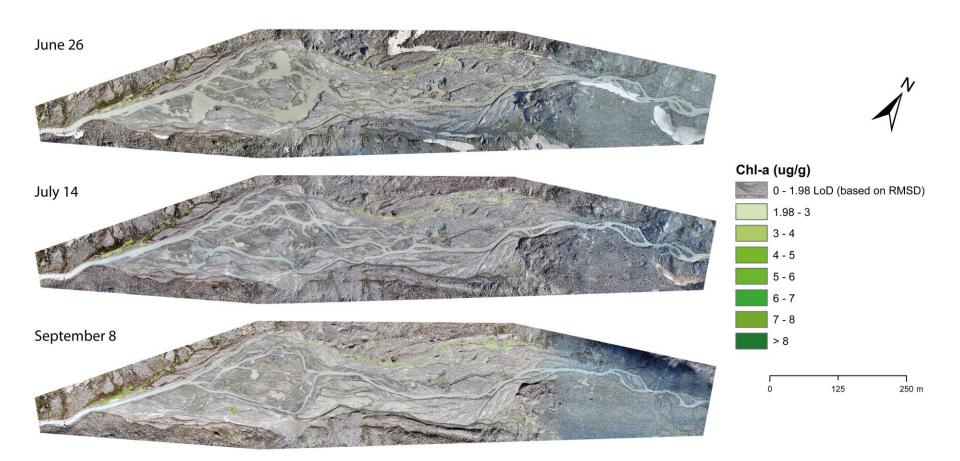
to early November 2020


- Following rigorous photogrammetric processing of James et al. (2020)
- Fully georeferenced orthomosaics

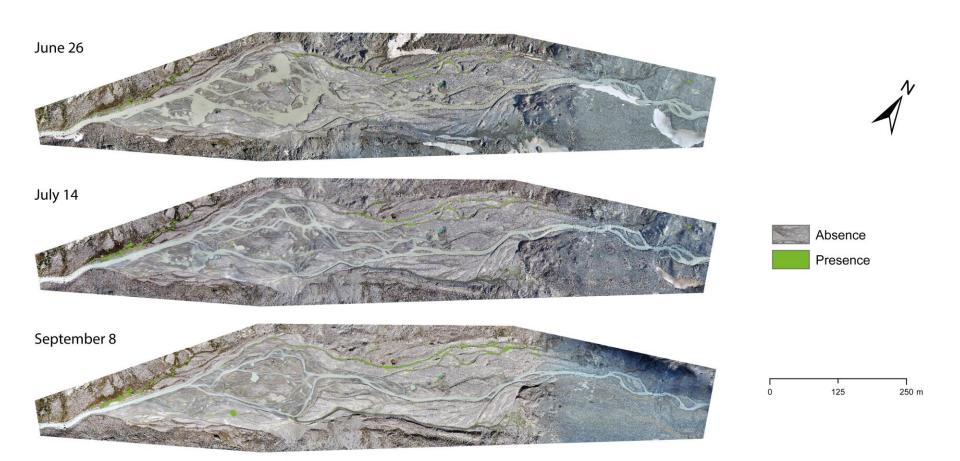
Relative radiometric normalization of orthomosaics

- Pseudo-Invariant-Feature correction following Schott et al. (1988)

Visible band ratio generation

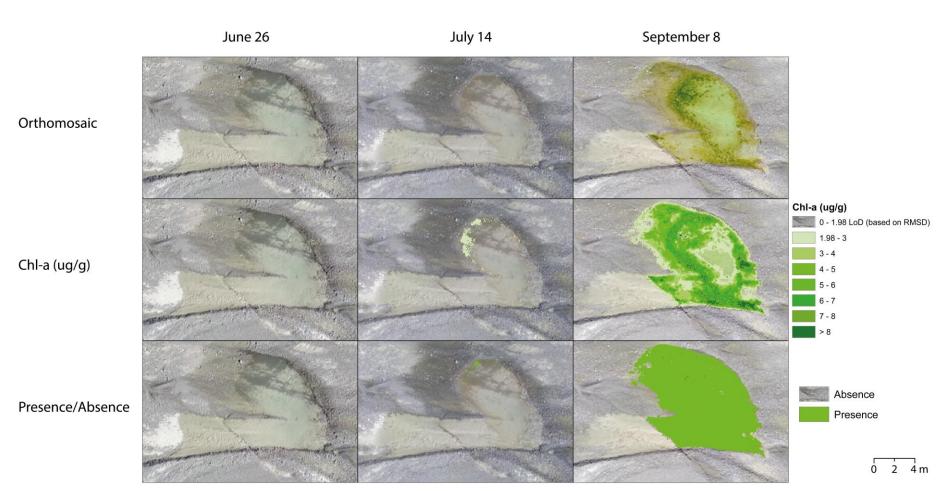

Name	Acronym	Formula	Source
Chromatic Coordinates of Red	RCC	R/(R+G+B)	Woebbecke et al., 1995
Normalized Green-Red Difference Index	NGRD	(g-r)((g+r)	Tucker, 1979
Excess Red Vegetation Index	ExR	1.4*r-g	Mao et al., 2003
Excess Green Vegetation Index	ExG	2*g-r-b	Mao et al., 2003
Green Leaf Index	GLI	((G-R)+(G-B))/(G-R-G-B)	Louhauchi et al., 2001
Visible Atmospherically Resistant Index	VARI	(G-R)/(G+R-B)	Gitelson et al., 2002
Kawashima and Nakatani Index	KANA	(R-B)/(R+B)	Kawashima and Nakatani, 1998
Red Green Ratio Index	RGRI	R/G	Saberioon et al., 2014

Chl-a concentration prediction



Chl-a concentrations (ug/g) based on RCC index

Biofilm absence/presence



Biofilm absence/presence based on KANA-index derived logistic model

A nice comparison

Conclusions

Our results suggest that **visible band ratios** derived from UAV-based RGB imagery processed through SfM-MVS are **a means of mapping biofilm distributions and chl-a concentrations** in shallow clear water channels and **at very high spatial and temporal resolutions**.

The use of low cost UAVs equipped with RGB cameras may be **potential alternatives** to expensive multi- or hyper-spectral cameras, especially in extreme and dangerous environments (e.g., glacier forefields) or when intensively repeated surveys are needed.

The forefield of the Glacier d'Otemma is a deadly place for UAVs - © Roncoroni M.

Corresponding author: matteo.roncoroni@unil.ch

Visit our group website: wp.unil.ch/alpenv/home/

