EVALUATION OF NEW IRRIGATION SCHEME IN CTSM

Yi YAO

29/04/2021, Brussels

Image from imaggeo.com

♦Implementation

♦Evaluation

♦Sensitivity test

♦Implementation

IRRIGATION DATASET IN CLM5

Surface dataset: plant function types (crop): rainfed (pftcon%irrigated(pft_type) = 0) irrigated (pftcon%irrigated(pft_type) = 1)

if pftcon%irrigated(pft_type) = 0, don't do irrigation:

if pftcon%irrigated(pft_type) = 1, do irrigation.

BUILDING NEW SURFACE DATASET

Surface dataset: add a new variable

for each irrigated cfts:

irrigation_m	nethod:
drip	(irrigation_method = 1)
sprinkler	(irrigation_method = 2)
flood	$(irrigation_method = 3)$

Based on the technique with the most proportion in each pixel

IRRIGATION DATASETS

Spatial distribution of global area equipped for irrigation (AEI) and the fraction of different irrigation techniques (Jägermeyr et al., 2015)

IRRIGATION WITH MY DEVELOPMENT

Technique	Amount	Way
Drip	Target – actual	Under canopy
Sprinkler	Target – actual	Over canopy
Flood	Saturate - actual	Under canopy

♦Evaluation

EXPERIMENT DESIGN

Experiments:

2005 – 2014 (2008 – 2014 for analysis) NOIRR : Irrigation switched off CTL : **OLD** irrigation scheme IRR : **NEW** irrigation scheme

Analyse only the irrigated pixels (irrigated area >= 10%)

IRRIGATION WATER WITHDRAWAL

Data source:

USA: USGS (Only 2010 in this study) China: (Zhou et al., 2020) (2008 – 2013 in this study) Other countries: Aquastat (Only 2012 in this study)

Observed irrigation (km³/year)(2012)

 $Bias_{OLD} = -3.82$

 $RMSE_{NEW} = 8.25$ $RMSE_{OLD} = 5.66$

IPCC REGIONS

Data source:

C3S (ESA CCI): surface soil (2 – 5 cm) moisture, including Active, Passive and **Combined**

Processing of model output:

Average value of the first two layers (0 - 2 cm and 2 - 6 cm)

SOIL MOISTURE

TOTAL WATER STORAGE

Data source:

GRACE: 2008 - 2014

Processing :

Calculate the anonym based on the mean value in 2008

TOTAL WATER STORAGE

SENSIBLE HEAT FLUX

Data source:

ERA5 2008 - 2014

SENSIBLE HEAT FLUX

LATENT HEAT FLUX

Data source:

GLEAM 2008 -2014 ERA5 2008 - 2014

LATENT HEAT FLUX GLEAM

LATENT HEAT FLUX ERA5

New irrigation scheme can improve greatly the performance on simulating the water used for irrigation

The impacts on other variables are less significant. New scheme do not always perform better than the old one on simulating other variables.

♦Sensitivity test

EXPERIMENT DESIGN

Experiments:

Limitation & groundwater:	IRR – no limitation and no groundwater IRR_GRD_LIM – limit the water and use groundwater IRR_NOGRD_LIM – limit the water and don't use groundwater
Frequency:	Once per 3, 5, 7, 10, 14 day, check whether do irrigation (if soil water less than threshold) default: no frequency
Frequency_no_threshold:	Once per 3, 5, 7, 10, 14 day, check whether do irrigation (if soil water less than target) default: no frequency
Length and start_time:	Irrigation length as 1h, 2h, 12h, 24h (default: 4h), and start time at 0h, 12h and 18h (default: 6h)

LIMITATION AND GROUNDWATER

FREQUENCY

FREQUENCY_NO_THRESHOLD

LENGTH AND START_TIME(IRRIGATION WATER WITHDRAWAL)

Switch on both limitation and ground water have nearly no impacts on irrigation water and latent heat flux, but switch on limitation and switch off groundwater may result in big changes

Frequency (with and without threshold) affects the irrigation water significantly, but the impacts on latent heat flux can be subtle. Normally less the frequency, bigger the difference

The effects on irrigation length and start_time are negligible

Image from imaggeo.com