Strong following earthquake forecasting by a pattern recognition approach in California

S. Gentili and R. Di Giovambattista

sgentili@inogs.it and rita.digiovambattista@ingv.it

Motivation and adopted algorithm

- Large earthquakes that occur in a cluster after a strong event pose a significant threat to civil protection because they cause additional damage to already weakened buildings, raising the risk of building collapse.
- We divided the clusters into two classes based on the difference Dm between the o-mainshock (the first shock with M>4) and the strongest following earthquake magnitude

(Type A: Dm≤1 Type B: Dm>1)

- NESTORE (NExt STrOng Related Earthquake) is a software package based on machine learning approach for A clusters forecasting. It analyses the seismic data at increasing time intervals after the mainshock.
- One-node decision trees are used to train the algorithm using different features derived from seismic catalogues a short time after the o-mainshock. The output for each feature is a threshold.

Tested features

- N2=number of aftershocks (with magnitude Mm-2)
- S=total equivalent source area
- Q=cumulative radiated energy
- Vm=variation of magnitude from event to event
- Z=linear concentration of aftershock
- SLcum, SLcum2 = deviation of S from the long term trend (SLcum2 with sliding window)
- Qlcum, QLcum2=deviation of Q from the long term trend (QLcum2 with sliding window)

NESTORE - TRAINING for each T_J

- NESTORE analyses the seismic data at increasing time intervals T=[0.25,0.5,0.75,1,2,...,7] days (T_i) after the mainshock.
- For relevant features at given T_i, it supplies a thresholds over which the cluster is classified as A and the probability to be an A.

NESTORE classification

After the training NESTORE can supply the probability to have an A cluster at time intervals T_i

ROC graph

- True Positive Rate= True(A) / All(A)
- False Positive Rate= False(B)/ All(B)
- A discrete classifier produces a point of coordinates (False Positive Rate, True Positive Rate) in the ROC graph.
- One point in ROC space is better than another if it is closer to the point (0,1)

LOO method

LOO method is a testing procedure in which the learning algorithm is applied once for each instance, using all other instances as a training set and using the selected instance as a test set

Database and clusters identification: Southern California

- Database: Southern California earthquake catalog [1981, 2020]
- Clusters identified by a windowing algorithm (Kagan 2002 for space and Gardner and Knopoff 1974 for time extensions)

Dots: clusters mainshock location (50 clusters); red: type A clusters; blue: type B clusters. Region of analysis: green region

Performance estimation in Southern California

NESTORE performances

Estimate using the Leave One Out (LOO) method:

- For all time periods, the NESTORE is always in the upper left triangle, corresponding to reliable performances.
- The TPR decreases for T>3 days.

Case studies: eight Mm≥5.8 clusters

Cluster	Abbr.
Westmorland	w
North Palm Springs	NPS
Whittier Narrows	WN
Superstition Hill	SH
Sierra Madre	SM
Ridgecrest	R95
Hector Mine	НМ
Ridgecrest	R19

Red symbols: A clusters Blue ones: B clusters

- Most clusters are correctly classified from six hours after the mainshock.
- For one cluster (HM) the classification becomes correct after one day, one cluster (NPS) is an outlier

What can be enhanced?

- The TPR decreases for T>3 days.
- The feature performances may be poor for some T_i
- We compared the results obtained by different training set in LOO analysis
- Bad performances are related to an overfitting for some training sets
- It is related with the small databases and to the unbalanced classes (for large Ti)

A robust NESTORE (rNESTORE)

T [days]	S	z	SLcum	QLcum	SLcum2	QLcum2	Q	Vm	N2	45							
										40 - 35 -							-
0.25	0	88	0	0	0	0	62	78	100	30 - 25 -							-
0.50	0	100	0	100	0	0	76	100	100	15 -							1
0.75	0	100	0	67	0	0	78	100	100	10 -							-
1	0	28	14	0	14	0	93	100	100	-0.01	0 0.01	0.02	0.03	0.04	0.05	0.06	0.07
2	0	3	13	0	100	0	93	100	100	40	1						
3	0	0	13	0	100	0	92	97	100	35 - 30 -							-
4	0	0	14	0	72	0	94	0	11	25 - 5							_
5	100	0	11	0	8	0	97	0	0	20 - 20 - 15 -							-
6	100	0	11	0	8	0	100	0	0	10 -							-
7	100	0	11	0	8	0	100	0	0	0 0.005	0.01	0.015	0.02	0.025	0.	.03	0.035

- We selected only time intervals for which at least 95% of the training sets NESTORE finds a reliable threshold
- We choose as threshold the mean of the thresholds of different training sets

Coherence test for Southern California for rNESTORE

- The training set and the test set are the same; this is an internal coherence test not a evaluation of the classifier
- However, we can see a great improvement in Q and Z feature performances, also because they are no more considered reliable for the Ti for which they failed
- NESTORE performances at 5-7 days are improved due to the more stable features

Independent test set: Northern California Nevada border

- Database: Comprehensive Earthquake Catalog (ComCat) [1981, 2021]
- Clusters identified by a windowing algorithm (Kagan 2002 for space and Gardner and Knopoff 1974 for time extensions)

Circles: test set clusters mainshock location (8 clusters); red: type A clusters; blue: type B clusters.

Dots: training set clusters mainshock location (50 clusters); red: type A clusters; blue: type B clusters.

Region of analysis: upper green region

Test of rNESTORE on an independent test set

Cluster	Abbr.					
Morgan Hill	мн					
Central California	сс					
Alum Rock	AR					
Chalfant Valley	CV					
Mono County	мс					
Hawthorne Nevada	HN					
Walker Lake	WL					
Mina Navada	MN					

- All the cluster's classifications are correct and the classifications in time are coincident or almost coincident
- The poorer performances for T=6 hours are because only one feature (N2) is used

Conclusions

- One of the main problems in statistical seismology is the small number of data available
- In Southern California, e.g., we selected 50 clusters in 40 years with the desired completeness magnitude
- We present a pattern recognition method NESTORE, optimized for small datasets
- We applied the method to Southern California seismicity where it shows a false alarm rate < 0.2 and a hit rate up to 0.80
- We proposed a robust version of the algorithm, **rNESTORE**, based on the comparison of the trainings for different datasets
- rNESTORE correctly classifies all the clusters of a small independent database in Northern California/Nevada

For further details

- Gentili S. and Di Giovambattista R. (2017). Pattern recognition approach to the subsequent event of damaging earthquakes in Italy. Physics of the Earth and Planetary Interiors, 266, 1-17.
 <u>https://www.researchgate.net/publication/314126252_Pattern_recognition_n_approach_to_the_subsequent_event_of_damaging_earthquakes_in_Ita_ly</u>
- Gentili S. and Di Giovambattista R. (2020). Forecasting strong aftershocks in earthquake clusters from northeastern Italy and western Slovenia. Physics of the Earth and Planetary Interiors, 303, 106483. <u>https://arxiv.org/ftp/arxiv/papers/2005/2005.02779.pdf</u>
- Gentili S. and Di Giovambattista R. (2020). How strong will be the following earthquake? DOI: 10.5194/egusphere-egu2020-8184 EGU General Assembly 2020 Online | 4–8 May 2020. <u>https://meetingorganizer.copernicus.org/EGU2020/EGU2020-8184.html</u>