

Ice or rock matrix?

Improved quantitative imaging of Alpine permafrost evolution through time-lapse petrophysical joint inversion

Johanna Klahold^{1,2*}, Christian Hauck², Florian Wagner¹

April 29, 2021

1 Institute for Applied Geophysics and Geothermal Energy, RWTH Aachen University
 2 Cryosphere Research Group, Department of Geosciences, University of Fribourg
 * now: Applied and Environmental Geophysics Group, Institute of Earth Sciences, University of Lausani

Permafrost

Ground at or below 0 °C during at least two consecutive years

- Permafrost is a sensitive climate change indicator and expected to gradually degrade
- · Hazard potential: loss of slope stability, release of organic carbon, effect on hydrological cycle
- · Quantitative knowledge of the permafrost composition is required for
 - process understanding and simulation of permafrost systems
 - physically-based assessment of the hazard potential
- **f** Ground ice content is difficult to quantify
 - ground temperature monitoring is insufficient

- Geophysical imaging allows **non-invasive** estimates of ground ice distribution
- Seismic and electrical methods (RST and ERT) are well suited
 - ice has significantly higher P-wave velocity and higher electrical resistivity compared to unfrozen water
- Quantitative information of single-method approaches is ambiguous
- Seismic and electrical methods have complementary sensitivities, which can be exploited in a joint inversion framework

RWITHA

UNI

FR

TGI

Petrophysical Joint Inversion (PJI)

One simultaneous inversion of multiple geophysical data sets, which relies on statistical or physically based relationships between petrophysical and geophysical properties.

PJI by Wagner et al. (2019):

Conclusions

EĞU

• simultaneous inversion of **seismic travel times and apparent resistivities**

UNI

FR

RWITH

- petrophysical relations and volume conservation are honored during inversion
- petrophysical basis: four-phase model (4PM) by Hauck et al. (2011)

Permafrost soils consist of the rock matrix and a pore-filling mixture of water, ice and air:

$$f_{\rm r} + f_{\rm w} + f_{\rm i} + f_{\rm a} = 1$$
 with $0 \le f_{\rm r}, f_{\rm w}, f_{\rm i}, f_{\rm a} \le 1$

Mohammed et al. (2018)

O Legend

UNI

FR

EGU

s: seismic slowness [s m⁻¹] ρ : electrical resistivity [Ω m] Volumetric fractions: f_r : rock matrix content f_w : water content f_i : ice content f_a : air content Medium velocities: v_r : rock velocity [m s⁻¹] v_w : water velocity [m s⁻¹] v_i : ice velocity [m s⁻¹]

RWITHA

 $v_{\rm a}$: air velocity [m s⁻¹]

Archie parameters:

 ho_{w} : water resistivity [Ω m] m: cementation exponent n: saturation exponent Permafrost soils consist of the rock matrix and a pore-filling mixture of water, ice and air:

$$f_{\rm r} + f_{\rm w} + f_{\rm i} + f_{\rm a} = 1$$
 with $0 \le f_{\rm r}, f_{\rm w}, f_{\rm i}, f_{\rm a} \le 1$

2 Seismic slowness is described by a time-averaging equation:

$$s = \frac{1}{v} = \frac{f_{w}}{v_{w}} + \frac{f_{i}}{v_{i}} + \frac{f_{a}}{v_{a}} + \frac{f_{r}}{v_{r}}$$

3 Electrical resistivity is dominated by the liquid water content:

$$\rho = \rho_{\rm w} \left(1 - f_{\rm r}\right)^{-m} \left(\frac{f_{\rm w}}{1 - f_{\rm r}}\right)^{-n}$$

1 Legend

UNI

FR

EGU

s: seismic slowness [s m⁻¹] ρ : electrical resistivity [Ω m] Volumetric fractions: f_r : rock matrix content f_w : water content f_i : ice content f_a : air content Medium velocities: v_r : rock velocity [m s⁻¹] v_w : water velocity [m s⁻¹] v_i : ice velocity [m s⁻¹]

RWTHA

 $v_{\rm a}$: air velocity [m s⁻¹]

Archie parameters:

 ho_{w} : water resistivity [Ω m] m: cementation exponent n: saturation exponent

Conclusions

Implementation

R'NTHAACHEN UNIVERSITY

Data Space

Model Space

$$\boldsymbol{p} = \begin{bmatrix} \boldsymbol{f}_w, & \boldsymbol{f}_i, & \boldsymbol{f}_a, & \boldsymbol{f}_r \end{bmatrix}^T$$

 $\mathbf{d} = \begin{bmatrix} \mathbf{t}, & \log(\rho_{\mathrm{a}}) \end{bmatrix}^{\mathrm{T}}$

During inversion, a transformed model vector is used such that $m_j^k = \log(p_j^k) - \log(1 - p_j^k)$.

Sensitivities

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{t}}{\partial \mathbf{f}_{\mathrm{w}}} & \frac{\partial \mathbf{t}}{\partial \mathbf{f}_{\mathrm{i}}} & \frac{\partial \mathbf{t}}{\partial \mathbf{f}_{\mathrm{a}}} & \frac{\partial \mathbf{t}}{\partial \mathbf{f}_{\mathrm{r}}} \\ \frac{\partial \log(\rho_{\mathrm{a}})}{\partial \mathbf{f}_{\mathrm{w}}} & \frac{\partial \log(\rho_{\mathrm{a}})}{\partial \mathbf{f}_{\mathrm{i}}} & \frac{\partial \log(\rho_{\mathrm{a}})}{\partial \mathbf{f}_{\mathrm{a}}} & \frac{\partial \log(\rho_{\mathrm{a}})}{\partial \mathbf{f}_{\mathrm{r}}} \end{bmatrix}$$

Objective Function

$$\Psi = \underbrace{\|\boldsymbol{\mathsf{W}}_{d}(\boldsymbol{\mathsf{d}} - \mathcal{F}(\boldsymbol{\mathsf{m}}))\|_{2}}_{\substack{\text{data}\\\text{misfit}}} + \underbrace{\alpha \|\boldsymbol{\mathsf{W}}_{m}\boldsymbol{\mathsf{m}}\|_{2}}_{\text{spatial}} + \underbrace{\beta \|\boldsymbol{\mathsf{W}}_{p}^{sum}\boldsymbol{\mathsf{p}} - \boldsymbol{\mathsf{1}}\|_{2}}_{\substack{\text{volume}\\\text{conservation}}} + \underbrace{\gamma \|\boldsymbol{\mathsf{W}}_{p}(\boldsymbol{\mathsf{p}} - \boldsymbol{\mathsf{p}}_{o})\|_{2}}_{\substack{\text{damping}\\\text{towards}}} \to \boldsymbol{\mathsf{min}}$$

constraint

1 Legend

Geophysical data: t: seismic travel time [s] ρ_{a} : apparent resistivity [Ω m] Volumetric fractions f_r : rock matrix content (1 – Φ) f_{w} : water content *f*_i: ice content $f_{\rm a}$: air content Model transformation *i*: model cell index k: pore filling index Inversion: \mathcal{F} : joint forward operator W_d: data weighting matrix W_{m} , $W_{\mathrm{p}}^{\mathrm{sum}}$, W_{p} : model weighting matrices α, β, γ : regularization param.

constraint

reference model

Petrophysical joint inversion...

- outperforms post-inversion transformation of conventional tomograms
 (by honoring petrophysics and volume conservation during parameter estimation)
- is not able to overcome the inherent petrophysical ambiguities between ice and rock matrix
- artificially introduces implausibly high changes in porosity in a time-lapse context

Approach: extend the PJI along the time axis → time-lapse petrophysical joint inversion (TLPJI)

- assumption: **constant porosity**
- · increases ratio of data and parameters, reduces degrees of freedom
- more dynamic perspective: temporal evolution of permafrost systems

To do: extend equations to the time dimension, add a regularization in time

Synthetic Case

UNI FR

EGU

RWITHAA

Implementation

Data Space

$$\mathbf{d} = [\mathbf{t}_{T_1}, \mathbf{t}_{T_2}, \cdots, \mathbf{t}_{T_N}, \log(\rho_{a, T_1}), \log(\rho_{a, T_2}), \cdots, \log(\rho_{a, T_N})]^{\mathsf{T}}$$

Model Space

$$\mathbf{p} = \left[\mathbf{f}_{w, \tau_1}, \cdots, \mathbf{f}_{w, \tau_N}, \mathbf{f}_{i, \tau_1}, \cdots, \mathbf{f}_{i, \tau_N}, \mathbf{f}_{a, \tau_1}, \cdots, \mathbf{f}_{a, \tau_N}, \mathbf{f}_{r, \tau_1}, \cdots, \mathbf{f}_{r, \tau_N}\right]^T$$

Transformed model vector: $m_j^k = \log(p_j^k) - \log(1 - p_j^k)$.

Sensitivities

Elegend

Geophysical data: t: seismic travel time [s] ρ_{a} : apparent resistivity [Ω m] Volumetric fractions: f_r : rock matrix content (1 – Φ) f_w : water content f_i : ice content f_a : air content Time-lapse inversion: T_i : time step i

Conclusions

FR RWTHAACHEN UNIVERSITY

Objective Function

The additional temporal regularization term...

- · ensures smooth changes from one time step to another
- needs to be scaled with respect to the other terms of the objective function

Legend

Inversion:

 \mathcal{F} : joint forward operator \mathbf{W}_{d} : data weighting matrix $\mathbf{W}_{m}, \mathbf{W}_{p}^{sum}, \mathbf{W}_{p}, \mathbf{W}_{T}$: model weighting matrices $\alpha, \beta, \gamma, \delta$: regularization param. N_{T} : number of time steps

EGU

RNTHAACHE UNIVERSIT

Objective Function

The inversion algorithm favors updated models that...

- + fit the data (Ψ_{d})
- are smooth in space $(\Psi_{\rm m})$
- fulfill the volume conservation constraint $(\Psi_{
 m sum})$
- are close to a predefined reference model (optional, $\Psi_{\mathrm{prior}})$
- + are smooth in time $(\Psi_{\rm T})$

Legend

Inversion:

 $\begin{array}{l} \mathcal{F}: \text{ joint forward operator} \\ \mathbf{W}_{\mathrm{d}}: \text{ data weighting matrix} \\ \mathbf{W}_{\mathrm{m}}, \mathbf{W}_{\mathrm{p}}^{\mathrm{sum}}, \mathbf{W}_{\mathrm{p}}, \mathbf{W}_{\mathrm{T}}: \text{ model} \\ \text{weighting matrices} \\ \alpha, \beta, \gamma, \delta: \text{ regularization param.} \\ N_{\mathrm{T}}: \text{ number of time steps} \end{array}$

EĞU

Model Setup

Three stages:

UNI FR

RWITHAA

 T_1 – frozen T_2 – after thawing T_2 – after drainage

Lateral porosity contrast

Forward modeling: 53 geophones/electrodes spaced by 2.5 m

Parameter	Function	Value
α	Spatial smoothing	?
zWeight	Vertical anisotropic smoothing	1
β	Volume conservation constraint	10000
γ	Damping towards reference model	0
$\delta_{ m r}$	Temporal smoothing of $f_{ m r}$?
$\delta_{\mathrm{w,i,a}}$	Temporal smoothing of $f_{ m w}$, $f_{ m i}$, $f_{ m a}$	0

UNI

FR

EĞU

RWTHA

Three criteria:

- **Data misfit** (χ^2) : Does the model still fit the data within the error bounds?
- Average deviation of the sum of all fractions from one $(|\overline{\Sigma}f_k 1|)$: Is the volume conservation constraint still fulfilled?
- Average change in rock content over time $(\overline{\Delta f_r})$: Is δ_r chosen high enough to ensure that the porosity is constant over time?

Conclusions

Choice of Regularization Parameters

EGU

UNI FR

RWIT

 $\Rightarrow \alpha$ = 20 $\delta_{\rm r}$ = 150

Conclusions

PJI and TLPJI Results for Time Step 1

Introduction

UNI FR

EGU

RWITHAAC

PJI and TLPJI Results for Time Step 2

16

UNI FR

EGU

RWITHAA

PJI and TLPJI Results for Time Step 3

EGU

Conclusions

EGU FR UNIVERSITY

A time-lapse petrophysical joint inversion of electrical and seismic data was developed and...

- defines the subsurface as a **space-time model** and merges all time steps into a single least-squares minimization problem of a global cost function
- adds a temporal regularization term to the objective function (that offers different possibilities of temporal smoothing, e.g. Active Time Constraints)
- allows to image the **quantitative evolution** of the different permafrost constituents (liquid water, ice, air)
- considerably improves the ice-rock discriminability of the conventional PJI (by postulating a temporally constant porosity)
- was applied to a **synthetic three-stage thawing scenario** and succeeded in differentiating between ice and rock (contrary to the PJI)
- was applied to **field data from Schilthorn** (Swiss Alps) and detected significant **permafrost degradation** between 2008 and 2017 (not shown here)

Future research could include...

- a more comprehensive **multiphysical characterization** of permafrost sites (by combining the TLPJI with e.g. moisture, temperature and porosity data)
- · advanced petrophysical formulations and site dependent petrophysical input parameters
- spatially variable petrophysical parameters throughout the model domain
- addition of another freeze-thaw sensitive geophysical data set to the TLPJI concept (e.g. IP, SP)
- · quantification of time-lapse data errors and adjusted data weighting
- technical improvements (e.g. further parallelization)
- further exploration of the implemented Active Time Constraints

Thank you for your interest! Please contact me if you have any questions, feedback, or further input! johanna.klahold@unil.ch

References

Hauck, C., Böttcher, M., and Maurer, H. (2011). A new model for estimating subsurface ice content based on combined electrical and seismic data sets. *The Cryosphere*, 5:453–468.
Mohammed, A., Kurylyk, B., Cey, E., and Hayashi, M. (2018). Snowmelt infiltration and macropore flow in frozen soils: Overview, knowledge gaps, and a conceptual framework. *Vadose Zone Journal*, 17.
Rücker, C., Günther, T., and Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. *Computers and Geosciences*, 109:106–123.
Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C. (2019). Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. *Geophysical Journal International*, 219(3):1866–1875.