

C. STEINER¹, M. FUCHSLUGER¹, G. GOETZL¹ and A. REHBOGEN²

¹Geological Survey of Austria ²Salzburg Institute for Regional Planning and Housing

Harmonized web-based information system for shallow geothermal energy use in Austria

Featuring new methods for resource mapping

EGU 2021, 29 April 2021

Harmonized web-based info-system for shallow geothermal energy use in Austria

Project: "Green Energy Lab – Spatial Energy Planning" (GEL-SEP)

Funded by: Austrian Research Promotion Agency (FFG)

Project lifetime: 2018 – 2021

Goal: Development of Heat-Atlas – Showing heating supply (including shallow geothermal energy) and heating demand and providing a sound basis to integrate heat in private and public planning processes

Project website: http://www.waermeplanung.at/

Project partners:

AEE - INSTITUT FÜR NACHHALTIGE TECHNOLOGIEN

E7 ENERGIE MARKT ANALYSE GMBH

RESEARCH STUDIOS AUSTRIA STUDIO ISPACE

Ansprechpartner: Ingrid Schardinger & Markus Biberacher

TECHNISCHE UNIVERSITÄT GRAZ INSTITUT FÜR WÄRMETECHNIK

STADTGEMEINDE ZELL AM SEE

ENERGIEAGENTUR STEIERMARK GMBH

Grazer **ENERGIE**Agentui

UIV URBAN INNOVATION VIENNA GMBH U urban innovation vienna

SALZBURG 2050 Ansprechpartner: Gerhard Löffler

AMT DER SALZBURGER LANDESREGIERUNG

The second strength and strengt AMT DER STEIERMÄRKISCHEN LANDESREGIERUNG

Invitation to upcoming webinar

"Novel approaches in shallow geothermal resource mapping"

2 projects Geocond and GEL-SEP present their approaches for shallow geothermal resource mapping

Date: 10 May 2021. 3:00 pm – 4:30 pm (CET)

Program:

Opening of the webinar and welcome address		
Adela Ramos Escudero (University of Catagena) & Burkhard Sanner (UbeG GbR): Large scale, pan-European resource mapping – results from the EU project GEOCOND"		
Martin Fuchsluger (Geological Survey of Austria): The application of g-functions in shallow geothermal resource mapping		
Q&A round and joint discussion		
30 pm End of the webinar		

*all times in CET (Vienna – Berlin – Paris)

Register to the workshop via e-mail to gregor.goetzl@geologie.ac.at until 10 May 2021, 2 pm (CET).

The workshop is free of charge and powered by MUSE and Geocond

This project has received funding from the European Union's Horizon 2020 research and innovation programme under gran

Shallow geothermal energy in the Heat-Atlas

New harmonized methods to determine **resources** and **possible limitations** in selected pilot areas:

SALZBURG

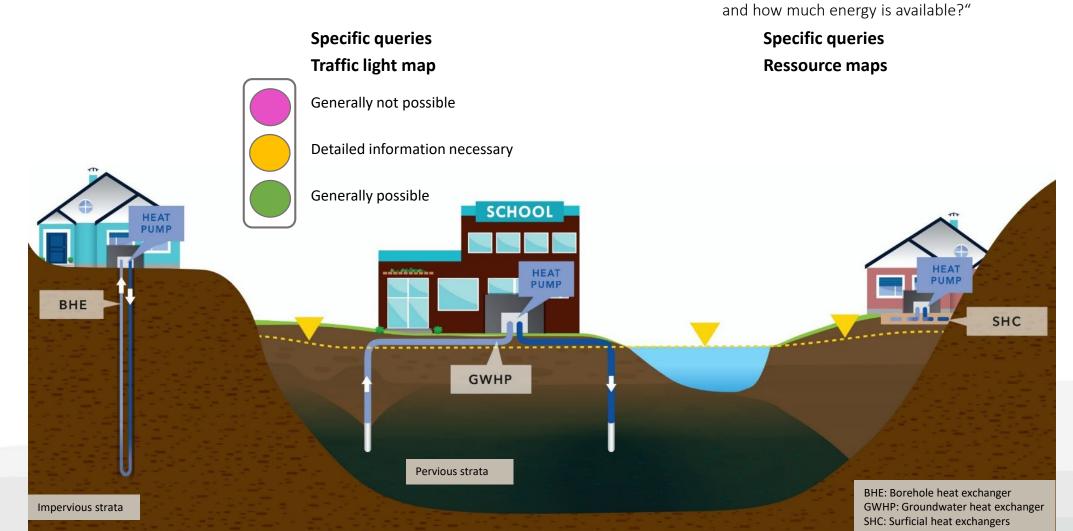
<u>Pilot area:</u> Area of permanent settlement

STYRIA

<u>Pilot areas:</u> Graz Kapfenberg Energieregion Weiz-Gleisdorf Oststeiermark

VIENNA

<u>Pilot area</u>: City of Vienna


Methods developed by:

- Geological Survey of Austria (borehole heat exchanger, groundwater heat exchanger)
- Friedrich-Alexander Universität Erlangen (surficial heat exchangers)

Shallow geothermal energy in the Heat-Atlas

Two main categories:

1) Possible limitations of use "What might limit the use of SGE?"

2) Energy resources

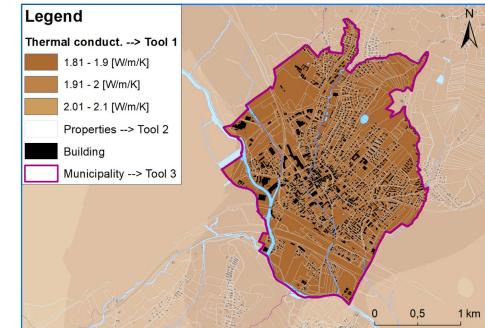
"What is the (hydro)geological setting

Tools in the Heat-Atlas

TOOL 1: Ressource maps and traffic light maps Map viewer

- Overall ressources independent of properties
- Summary of all possible limitations of use

TOOL 2: Location specific query


Automatically generated PDF-report

- Restrictions and remarks for the use of shallow geothermal energy
- Resources available at the property
- Comparison of resources with the heating/cooling demand of the property → amount of coverage
- Important (hydro)geological information

TOOL 3: Regional analysis for city districts or municipalities Automatically generated PDF-report

- Suitability of the area
- Overall ressources available
- Amount of coverage

Different spatial resolutions for the tools.

Important:

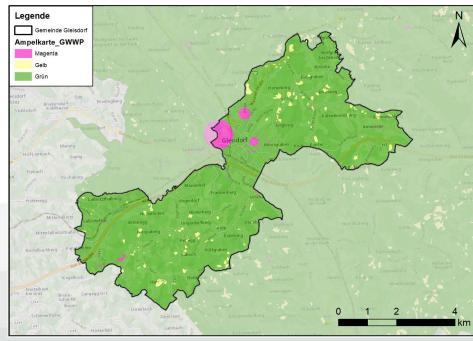
All tools are developed for GWHP, BHE and SHC.

TOOL 1: Traffic light maps – All systems

G

Step 1: Colouring the possible limitations of use

Step 2: Combination of all possible limitations to traffic light map


Possible limitation of use
Water protection and conservation areas
Nature protection
Limitation of drilling depth-
Confined groundwater body
Landslides
Rocks bearing inflammable gases
Potentially carstified rocks
Multiple groundwater storeys
Existing drinking water wells
Existing production and infiltration wells of thermal
groundwater heat exchangers
Any existing groundwater use
Contaminated areas
Problematic chemistry of groundwater
Rocks susceptible to dissolving
Rocks susceptible to swelling
Flooding areas
Hazard zone plan
Potentially contaminated areas
Surface water
Mining areas and artificial cavities
Protected historical buildings
Archaeological relevant areas

Orange colored limitations are included in the traffic light map. Grey colored limitations feed only into the queries (tool 2 and 3).

Traffic light map Generally not possible Detailed information necessary Generally possible

Example of a traffic light map.

Shows always the strongest color (magenta over yellow over green).

TOOL 1: Resources – Groundwater heat exchanger

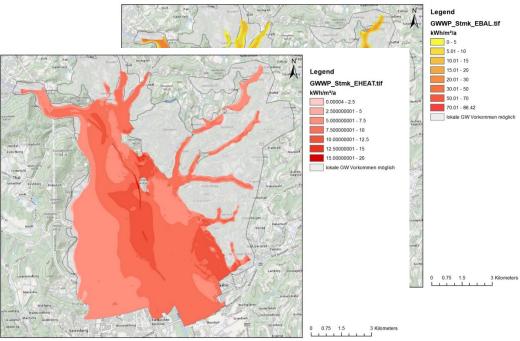
Tool 1: Resource maps Goal of tool: Overview of resources

Wholistic approach -> Outputs are based on energy content *Calculation of energy content for 2 modes of operation:*

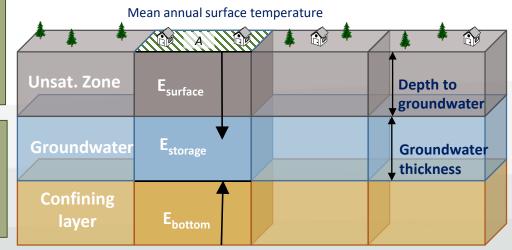
Mode of operation	GW-Temp limit	Life time	Heat flows
Unbalanced heating and cooling	5 -18 °C	20 years	Considered
Balanced heating and cooling	5 - 18 °C	1 years	Not relevant

INPUT

Hydrogeological parameters (as rasters):


- Outline of suitable groundwater body
- GW-thickness
- GW-temperature (mean)
- Depth to GW level

System-related parameters

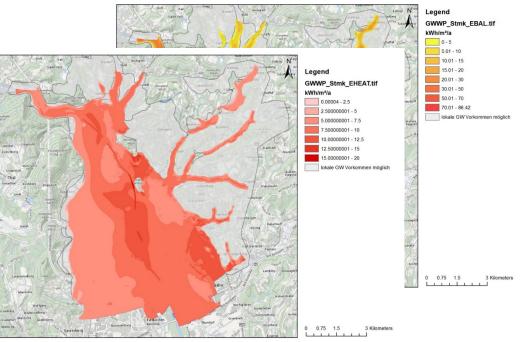

- Usable temperature range (5-18 °C)
- Life time (20 years)
- Geometrical doublet factor (0.75)
- Parameters to estimate heat flow from surface and bottom

OUTPUT maps

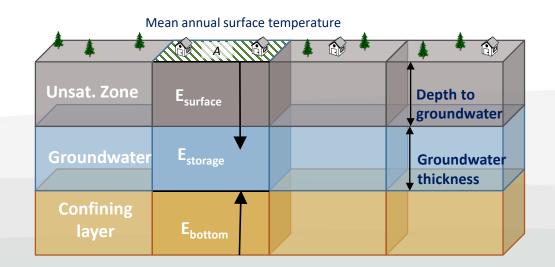
Example of resulting energy content maps for Graz.

TOOL 1: Resources – Groundwater heat exchanger

Tool 1: Resource maps


Goal of tool: Overview of resources and comparison of locations

RESULTS


Hydrogeology

- Outline of suitable groundwater body
- GW-temperature [°C]
- GW-thickness [m]
- Depth to GW level [m]

Note: Black result parameters will be shown as maps

Example of resulting energy content maps for Graz.

Climate

Standardized operating hours for heating and cooling [h]

Specific capacity

- Maximum pumping rate [l/s]

Specific energy content

- Heating and cooling with standard operating hours [kWh/m²/a]
- Balanced mode of operation [kWh/m²/a]

G

TOOL 2: Groundwater heat exchanger

TOOL 2 – Location specific query

Goal of tool: Resources and limitations on the property

Property

G

Total space	1851 m²
Free space	753 m²
max. difference between wells	94 m
Demand of building	
Power for heating	14 kW
Power for cooling	3.6 kW
Annual heating consumption	33.7 MWh/a
Annual cooling consumption	1.2 MWh/a
SPF of heat pump, est.	2.5

Maximum pumping rate is determined based on free space available at the property

 \rightarrow Output as text and figures in PDF-report

vvn	l/d	0		6	
0.8	Pum	ping v	vell	84.7	31
-			19.8		
4.7	68.7		14	5	Y
					M
	Infilt	ration	well	ŀ	
9	2	1		1	X

Hydrogeol	ogy (Tool 1)	
	GW temperature min/max	10.8 °C/12.8 °C
	hydraul. conductivity	0.0001 m/s
	Hydraulic gradient	0.008 m/m
	GW thickness, est.	3.4 m
	GW depth, est.	5.1 m
Resources		
	Pumping rate	0.4 l/s
	Temperature shift - heating	5 K
	Temperature shift - cooling	5 K
	Power for heating without/with COP	8 / 13 kW
	Power for cooling without/with COP	8 / 6 kW
	Coverage of demand for heating	93 %
	Coverage of demand for cooling	166 %

Limitation of use

(Tool 1) Detailed information is necessary due to: Water conservation area on the property

Additional information for planning, installation and operation respectively:

Risk of scaling of iron or manganese. Analysis of the groundwater chemistry is recommended.

TOOL 1: Borehole heat exchanger

TOOL 1 – Resource maps

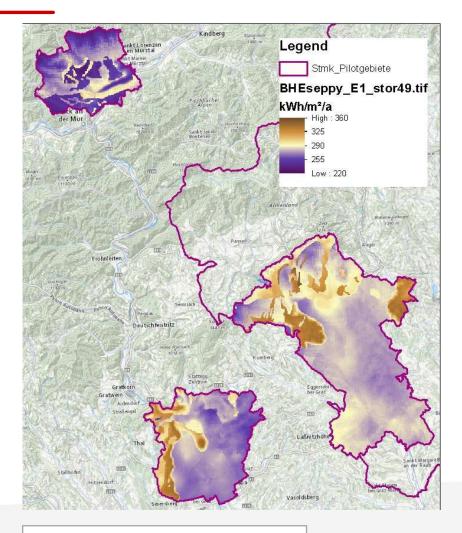
Goal of tool: Overview of resources

Geology

- Thermal conductivity [W/m/K]
- Underground temperature [°C]

Note: Black result parameters will be shown as maps

Climate


Standardized operating hours for heating and cooling [h]

Specific capacity – Singular BHE

- Heating and cooling with standard operating hours [W/m]
- Balanced mode of operation [W/m]

Specific energy content – BHE field

- Heating and cooling with standard operating hours [kWh/m²/a]
- Balanced mode of operation [kWh/m²/a]

Parameters of the system, constant:

- Depth of BHE (100 m)
- Temp.limits brine (-1.5 to 25 °C)
- Period of use (20 years)
- Borehole thermal resistance (0.75 K/W/m)

TOOL 2: Borehole heat exchanger

TOOL 2 – Location specific query

Goal of tool: Resources and limitations on the property

Property

Total space	1851 m²
Free space	753 m²
max. difference between wells	94 m
Demand of building	
Power for heating	14 kW
Power for cooling	3.6 kW
Annual heating consumption	33.7 MWh/a
Annual cooling consumption	1.2 MWh/a
SPF of heat pump, est.	2.5
	A DECEMBER OF

Maximum pumping rate is determined based on free space available at the property

→ Output as text and figures in PDF-report

Geology

Thermal conductivity 0-100 m	1.9 W/m/K
Surface temperature	10.9 °C
Underground temp. 0-100 m	11.9 °C
Basic resources tool 1	
Singular BHE	32.7 W/lfm
Requirements to meet demand	
Number of BHEs	5 pieces
Length of BHEs	110 m
Capacity (10 m distance of BHEs)	25.3 W/lfm
Demand of space	236 m²
Resources at the property	
Number of BHEs at free space	11 pieces
Capacity (10 m distance of BHEs)	22.9 W/lfm
Coverage of demand	217 %
Total capacity available	30 kW
Annual energy content available	72 MWh/a

Limitation of use

(Tool 1) Use of BHE is generally not possible due to: Water protection area on the property

G

TOOL 3: Groundwater heat exchanger

TOOL 3 – Regional query


Goal of tool: Total resources in city district

- Integration of energy content (Tool 1) over selected area [GWh/a]
- Suitability of area (=Groundwater availability and no limitations/detailed information)
- Amount of coverage (Energy content vs. demand in %)
- → Output as text and figures in PDF-report

Energy content [GWh/a]			
	Heating	Cooling	Storage
Gleisdorf	24.0	23.1	45.3
Nitscha	0.2	0.2	0.2
Ungerdorf	2.1	2.9	2.7
Labuch	2.3	2.6	4.4
Laßnitzthal	3.1	4.9	3.3

Suitabiliy of municipality for GWHPs 55 % Very well suitable 12 % Well suitable 20 % Not suitable (no resources) 13 % Protection areas (no resources)

Amount of coverage [%]				
	Heating	Cooling	Storage	er
Gleisdorf	29	147	55	
Nitscha	1	15	1	2
Ungerdorf	31	519	41	
Labuch	30	460	57	7
Laßnitzthal	29	593	30)

Example of figure shown in regional report.

Invitation to upcoming webinar

"Novel approaches in shallow geothermal resource mapping"

2 projects Geocond and GEL-SEP present their approaches for shallow geothermal resource mapping

Date: 10 May 2021. 3:00 pm – 4:30 pm (CET)

Program:

Opening of the webinar and welcome address		
Adela Ramos Escudero (University of Catagena) & Burkhard Sanner (UbeG GbR): Large scale, pan-European resource mapping – results from the EU project GEOCOND"		
Martin Fuchsluger (Geological Survey of Austria): The application of g-functions in shallow geothermal resource mapping		
Q&A round and joint discussion		
30 pm End of the webinar		

*all times in CET (Vienna – Berlin – Paris)

Register to the workshop via e-mail to gregor.goetzl@geologie.ac.at until 10 May 2021, 2 pm (CET).

The workshop is free of charge and powered by MUSE and Geocond

This project has received funding from the European Union's Horizon 2020 research and innovation programme under gran