

Adriana Guatame-Garcia, Mike Buxton, Sara Kasmaee, Francesco Tinti, Rachel Horta Arduin, Aina Mas Fons, Francoise Bodenan, and Joachim Schick

Recovering minerals from mining residues

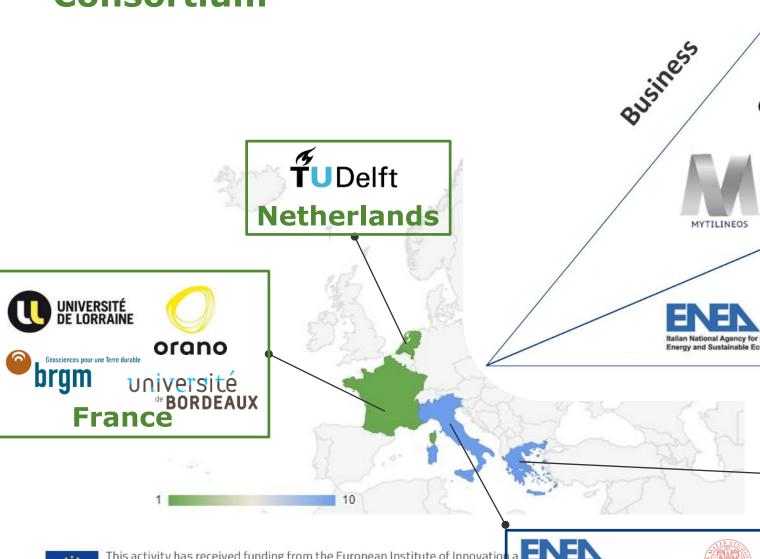
- The mining industry produces millions of tons of residues every year
- The cut-off grade changes upon
 - Market conditions
 - Technological capabilities for mineral extraction and processing
- It is necessary to find alternative sources of minerals:
 - Bigger challenges in mineral recovery from traditional sources
 - Increasing demand of minerals (including critical raw materials CRMs)
- Some mining residues need to be stabilised to limit environmental impact

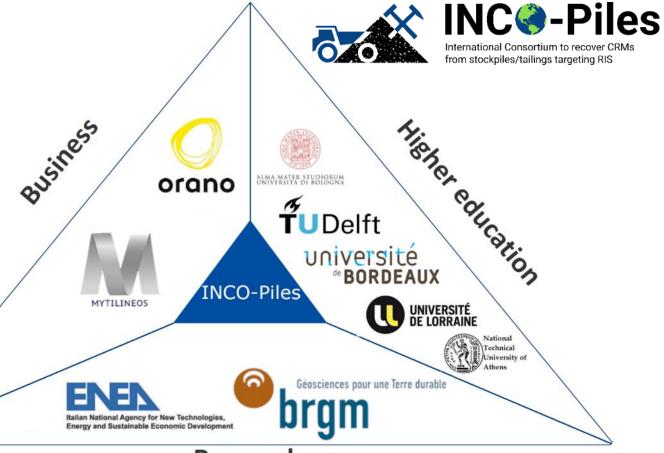
INCO-Piles 2020

International consortium to recover Critical Raw Materials (CRMs) from stockpiles/tailings targeting RIS

- Project segment
- Innovation themes
- Innovation area
- Strategic Objective
- Project duration

- → Matchmaking and Network Regional Innovation Scheme: RIS
- → Exploration, Mining and Processing
- → Sustainable Discovery and Supply
- → Securing Raw Material Supply
- → 1 January 2020 31 December 2021


Objectives


Establish and develop innovative technologies for the sustainable extraction of CRMs from mining residuals (RIS strategic areas).

- 1. Review of sampling, characterisation and processing techniques;
- 2. Data collection from mining wastes;
- 3. Valorisation of a real application;
- 4. Economic and sustainability analysis on recovery of CRMs.

Consortium

Research

Project timeline

WP	M 1-6	M 7-12	M 13-18	М 19 -24
1 – Management WP Leader: <u>UNIBO</u>	General project management, facing COVID-19 situation			
2 – Round Tables WP Leader: <u>BORDEAUX</u>	Round Table n°1 – Challenges 2020 Round Table n°2 – Opportunities 2021			
3 – Technical Review WP Leader: <u>NTUA</u>	Sampling, Characterisation and Processing reviews			
4 – Pilot Site WP Leader: <u>ORANO</u>			Pre-feasibili one selecte	•
5 – Market and Env. WP Leader: <u>ENEA</u>	Market scenarios, environmental issues Special focus on the pilot site			
6 – Comm. and Diss. WP Leader: <u>UNIBO</u>	Internal communication and with EIT RM External promotion: conferences, workshops, website			

Results achieved so far

- State of the Art and Review:
 - → Sampling techniques
 - → Characterisation techniques
 - → Processing techniques

- Preliminary field studies and database of potential sites for CRMs recovery in the RIS area
- Selection of a case study for field investigation: Bauxite Residues from Aluminium of Greece
- Round Table involving more than 70 experts (December 2020)

1st Round Table | Challenges on the recovery of Critical Raw Materials (CRMs) from tailings

Key organisers:

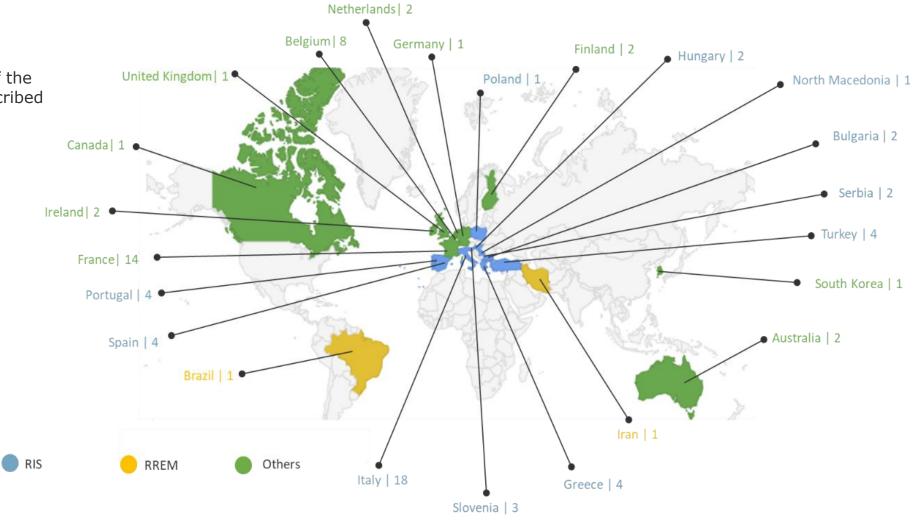
Place

Date December 11, 2020

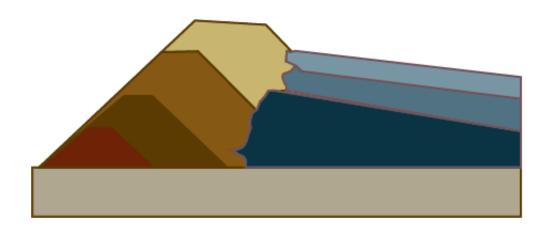
Hybrid event | Online and in Bologna, Italy

Time 8h30 – 19h00 | Central Europe Time

Panel A	Challenges on the sampling and characterisation from mining residue
Panel B	Extraction and processing challenges
Panel C	Economic and environmental challenges



Countries of origin of the participants that subscribed to the event

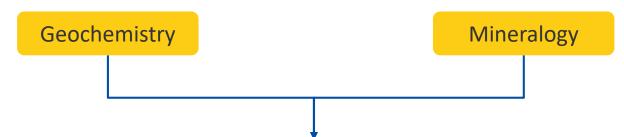


Challenges on the sampling and characterisation from mining residue

Challenge 1: Heterogeneity & lack of historical data

Heterogeneity due to:

- Mineral processing of the primary ore
- Deposition history
- Post-depositional weathering reactions

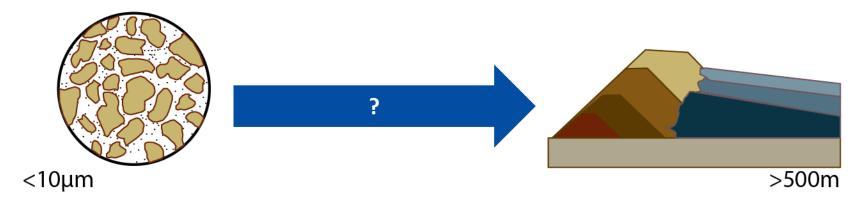

Lack of historical data:

- Data lost for abandoned sites
- No recording of data
- No vision of future for active sites

Challenge 2: Fit-for-purpose data

Everything must depend on the aim of the characterisation campaign

What kind of data?
Is it representative for the spatial scales we are working on?


Can we get access to the site to collect samples?

Can we cover the entire waste deposit?

How to avoid material mixing while collecting the samples?

Challenge 3: Up-scaling

Possible strategies

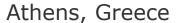
- 1. Lab analyses + in-the-field surveys + remote sensing techniques
- 2. Combination of modern analytical instruments for geochemistry and mineralogy (e.g., pXRF, LIBS and portable infrared spectrometers)
- 3. Implementation of machine learning, artificial intelligence and resource modelling techniques

Challenge 4: Safety

- Uncapped waste deposits → higher risk for health and safety
- Unstable deposits → high risk for sampling
- Pollution on water mixing with the tailings
- Impact on society: Social acceptance
- Even bigger challenges/difficulties in re-mining and re-processing

Monteponi Mine red muds, Italy (Lucarini et al. 2020)

What is next for INCO-Piles?


- Pre-feasibility study for one selected pilot site
- Market scenarios, environmental issues
- 2nd Round Table | Opportunities for technology transfer to foster the recovery of CRM from tailings

Date September 8, 2021

Place Hybrid event | Online and in

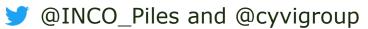
Half day event | Afternoon

Special session of

RawMat2021

www.rawmat2021.gr

Key organisers:



Stay tuned of any update!

Supported by:

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation