

Erkoç, M. H.¹, Özarpacı, S. ¹, Özdemir, A. ¹, Eskiköy, F ²., Ayruk, E. T ¹., Farimaz, İ ¹., Doğan, U. ¹, and Ergintav, S ³.

¹Yıldız Technical University, Department of Geomatic Engineering, Geodesy Division, Istanbul, Turkey ²Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Department of Geophysics, Istanbul, Turkey ³Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Department of Geodesy , Istanbul, Turkey

In this study, we present the vertical co-seismic deformations of the Samos-Izmir Earthquake using an indirect approach based on GNSS, InSAR and Tide Gauge data.

- The Samos-Izmir Earthquake (Mw=6.9) of October 30, 2020 is among the strongest earthquakes that occurred in recent years throughout the Eastern Aegean.
- The epicenter of this earthquake was 14 km away from Samos Island and 25 km away from Gümüldür-Izmir region.
- > The local tsunami with the wave heights reaching ~2m was triggered by the mainshock.
- The most affected areas were Sigacik and Akarca in Turkey (Yalciner et. al.,2020) and Vathy Town (NE Samos Island) in Greece (Triantafyllou et. al.,2020).

• Uplift

SAMOS Island Town of Gümüldür Town of Özdere

• Subsidence

Mykonos,Lesvos, Chios, Naxos Island Town of Çeşme, Urla, Sığacık and Didim

• Maximum Uplift

SAMO : 86 mm

Maximum Subsidence

URIS : 87 mm

EARTHQUAKE RESEARCH —— INSTITUTE 1868

• Ascending pass

First : 23.10.2020 Second : 10.11.2020

Descending pass

First : 24.10.2020 Second : 11.11.2020

• ISDL/JRC NETWORK

ISDL-41 (Plomari) Tide Gauge ISDL-25 (Kos) Tide Gauge Data Period : 1 minute

TUDES NETWORK

MNTS Tide Gauge

Data Period : 15 minute

*One-Minutes of Data

*One-Minutes of Data

MNTS (MENTES) Tide Gauge Station

*15 Minutes of Data

Some Observation Points because of Tsunami

E

Sea water reached Agricaltural area.

Results

- The vertical components of GNSS stations have shown 10 cm uplift in Samos Island and 10 cm subsidence in the coast of Turkey.
- The results of the geodetic (GNSS, InSAR) analysis are consistent with each other. (Correlation coefficient : 0.84)
- It has been seen that whereas relative sea level in KOS (ISDL-41) and PLOMARI(ISDL-25) tide gauge stations are affected by the local tsunami, but relative sea level changes could not be observed in the MENTES (MNTS) station.

Acknowledgements

This research is supported

by the Project Numbers 5200101 of The Scientific

and Technological Research Council of Turkey (TUBITAK)

Thank you for your attention.