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Comparison between ‘semi-grey’ and Newtonian cooling models

Background

Aim: explore the effect of reducing planetary radius
on the transition to super-rotation. The experiments

Our ‘semi-grey’ model is built using Isca [10], which is a
flexible framework for modelling the dynamics of planetary

Super-rotation is a phenomenon where the specific axial

angular momentum of the wind exceeds that of the radius decreasing compare the circulation obtained in Newtonian heres buil " :
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emerge ‘spontaneously’ on planets that are small or slowly —
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extends to fill the stratosphere.

Next steps...

atmospheres, or in numerical models of either planet.

Analyse similarities and differences between
waves accelerating super-rotation in reduced
radius experiments across different model

Effects of surface pressure, rotation rate, and shortwave absorption VBRSO CRTLNS IR0 ITv T B CIINY (¢
stratospheric absorption of shortwave radiation

on super-rotation.

Q = Qg/20 Qg/20 + swabs Qg /20, ps =20psE Qg /20, 20ps g + sw abs
Our aim is to take a step towards ‘reality’, by studying the configurations.
transition to super-rotation in a GCM with parametrisations 10¢ 10° Super-rotation is weaker compared with reduced
that are more sophisticated than those used in previous _ 10° radius experiments (note different colour scale). Understand the role of model top location in
idealised modelling studies [3-5], but still simplified when = . . This is due to the enhanced effects of surface setting the lower stratospheric and
compared to models tuned to simulate a specific planet (e.g., 5 10° 10° friction and thermal forcing when rotation rate is tropospheric circulation.
refs. 7 and 8 for Venus, or ref. 9 for Titan). We use our g 10 10 Sw abs above here reduced [11].
simulations to investigate how properties of Venus and Extend the rotation rate, surface pressure
Titan (e.g. slow rotation rate, small radius, large . o 1o 10" Increased p, appears to weaken super-rotation. and shortwave absorption study to a full

atmospheric mass, absorption of solar radiation in -0 050 =0 050 -0 0 S0 -0 050 This is not yet understood, and the simulation parameter survey to see how super-rotation
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atmosphere) may combine to yield strong super-rotation. may not be fully equilibrated. scales with each of these.
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The results in this poster are a preliminary ‘sneak peak’ of
. . u/ms-1 : :
our results. More to come soon! absorbing substance in the stratosphere that absorbs 4/7 of the When a stratospheric shortwave absorber is

incoming solar radiation (fraction chosen to match Titan).

Experiments with ‘sw abs’ in the title have a shortwave

Investigate the role of diurnal tides in
accelerating super-rotation for different
parameter combinations, and the relation
between planets with a long solar day and
tidally locked planets.

included, super-rotation is enhanced there. The
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