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Why is large sample hydrology important in hydrological forecasting? Read more

 Girons Lopez, M., Crochemore, L., & Pechlivanidis, I. (2021). Benchmarking an operational hydrological model for

llias G. Pechlivanidis 1, L. Crochemore 12, Marc Girons Lopez 1 providing seasonal forecasts in Sweden. Hydrology and Earth System Sciences, 25(3), 1189-1209.
_ , . . o https://doi.org/10.5194/hess-25-1189-2021
1 Swedish Meteorological and Hydrological Institute, Norrk6ping, Sweden » Pechlivanidis, I. G., Crochemore, L., Rosberg, J., & Bosshard, T. (2020). What are the key drivers controlling the quality of

seasonal streamflow forecasts? Water Resources Research, 56, e2019WR026987. https://doi.org/10.1029/2019wr026987

2INRAE, UR Riverly, 69100 Villeurbanne, France

Correspondence to: ilias.pechlivanidis@smhi.se

Objectives Experimental setup Skill distribution - link to catchment characteristics  Attribution to physiographic and hydroclimatic descriptors
_ : Lead time
Evaluate the seasonal streamflow forecasts in Sweden and Swedish assessment
. . 5 om0 o . P Week 1 Week 4
Europe as a function of lead time and initialisation month Ensemble Streamflow Prediction (ESP) methodology: ~ >
e 1981-2015 analysis period
Understand the spatial and temporal distribution of forecast * 25 ensemble members (-3 years window around current year) ) 7 Clusters
quality and the coupling with catchment characteristics * Initialisation 4 times a month S 6 et
« 7 months lead time, weekly aggregation ) 5 -2
Use machine learning to attribute forecast quality to %2 4 § g
physiographic and hydroclimatic descriptors Pan-European assessment 2 3 7
GCM-based using the ECMWEF prediction system (SEAS5): 2 5 .'..S
e 1993-2015 analysis period E . =4
* 25 ensemble members .
The HYPE model setups * [|nitialisation every month = Fig. 5. Spatial distribution of hydrologically similar basins over Sweden and Europe.
& e * 7 months lead time, monthly aggregation 10 B———
The Swedish and pan-European setups of @) .f o & o A B : 08 - S 7 7
the HYPE model (named S-HYPE and E- A XL Driving reference data Fig. 3. Skill of S-HYPE ESP forecasts as a function of lead time. “
HYPE) were designed to provide water O o O N
information to society (e.g. environmental Swedish assessment : ; : . et | | N oot | | cuserz | | Cluter
and climate assessments) at high spatial We use a spatial interpolation product of daily precipitation and 5 2 s 2 R = T T
resolution including making capabilities 1 temperature covering the whole of Sweden at a resolution of 4x4 & ° 10
for making predictions for ungauged 0s km? (PTHBV) to produce the series of ESP hindcasts. : : : - _ " 1 _'\‘ ] _h
basins and using a range of different data i : A S a 1 |
sources. The S-HYPE and E-HYPE " Pan-European assessment & .l I '
operational models have an average 04 S Seasonal predictions of daily mean precipitation and temperature 2 2 2 P L Cusers | S cuses | custers | |\ L Cuser
spatial resolution of 10 and 215 km?2 were taken from ECMWF’s seasonal forecasting system (SEASS5) ) . ] s e ___ ——— ———
. . . 0.2 . . . . Uw) ) ) ) 0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
respectively; while they can provide available at a grid spacing of approximately 36 km. The forecasts = : 1 T
hydrological information at about 39,500 . were bias-adjusted using a quantile mapping method and the : i Fig. 6. Forecast skill as a function of lead time for each of the 7 clusters in Sweden.
and 35,400 sub-basins respectively. HydroGFD2.0 dataset (precipitation and temperature) as reference. 3 3 g4 eI e . S _—
p y y (p p p ) 00 o2 REE) 06 Jr@® ... ) . o o @ O- 10 )
, , o@e@ce- oo | Conclusions
Evaluation metrics VO@Oe@®ee® - - oo
: ; : o o @ o] |8 :
_ _ _ oS : : oo o M- Due to the large sampling, we
We evaluate the forecasts on the model reality using the Continuous & s 3 31 o o o0 can detect spatial and temporal
- . . O o y 84 °C 6 C .
Ranked Probability Score (CRP.S) and its skill §core (CRPSS) to g g e ® s o o ol = oatterns of forecast quality.
evaluate the performance and skill of the hydrological forecasts. g CRRUSREIeEE | gl i afedes | 9] - safiplioe @ - -00 ll° 8
(0.0 0.0 0.1 0.2 03 04 05 0.0 0.2 04 06 0.8 1.0 04 06 038 1.0
I(GEO1 2 CRPSfcst DLD q70 BFI : v 2 2_ 4 o Forecasts can be regionalized,
011101 L CRPS = [CDFobs(x) - CDchst(x)] dx CRPSS =1 - CRPS,;; Fig. 4. Forecast skill as a function of a range of flow signatures. ® o o 3|o—02 4 based on a priori knowledge of
' cilm o o . 0 O : :
g Tuiroes - : ®- -0 o0 l° 0,02 £ the local hydro-climatic
0,31ll0,5 1 %1 e — Flow signatures 1 O 2 "
051107 LS Total ¢ @ o° ° @ o O~ 08 E conditions.
o 0708 8 Normalised low flow (q95) Normalized high flow (g05) 38T 3 o O,.-l
e . C 08“”1% | P st u_‘é Coefficient of variation (CV) Flashiness (Flash) L % Streamflow can generally be well
5 S - /‘ '_/_ryg%;:iim\ ~\.\i°_‘§j; ) A 8 N Normalised peak distribution (PD) Rising limb density (RLD) . y - bﬁf . ) predicted in river systems with
’ EOL L 5 S i X Declining limb density (DLD) Normalised relatively low flow (q70) Fig. 7. Importance ranking of descriptors that slow hydrological responses.

Fig. 1. Kling-Gupta Efficiency (KGE) for: (a) S-HYPE and (b) E-HYPE. Fig. 2. Schematic representation of CRPS and CRPSS calculation. Base flow index (BFI) influence the forecast quality for all months.
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