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An experimental constraint on the oxygen isotope (18O/16O) fractionation between water and aqueous hydroxide ion
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Brief overview:

① Main question: What is the temperature dependence of αH2O–OH- ?

② Why is it interesting? The parameter αH2O–OH- is widely used in geochemical models.

③ Is it not known already? There is only one experimental study that determined the αH2O–OH-
value at 15 °C. Its temperature dependence was calculated based on statistical mechanics. A 
recent study pointed out several shortcomings of these earlier works and estimated different
αH2O–OH- values based on quantum-chemical calculations.

④ What did we do? We did quantitative precipitation experiments at a wide range of 
temperatures using CO2 gas and alkaline solutions with known δ13C and δ18O values. Then, we 
measured the δ18O values of the carbonate precipitates. From these values, using a mass 
balance, we calculated the δ18O value of OH-, and finally αH2O–OH-.

⑤ What did we find? The temperature dependence of experimentally determined αH2O–OH-
values agree with theoretical calculations, but the values are shifted to higher values, likely due 
to kinetic isotope effects on OH-.

⑥ Our experimentally determined equation accounts for kinetic isotope effects that are 
superimposed on thermodynamic equilibrium αH2O–OH- values in most natural systems.
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State of the art: Previous exprimental and theroretical data on αH2O–OH-

• The first (and so far, the only) direct experimental estimate for αH2O–OH- is 
from Green & Taube (1963▲).
• G&T determined the temperature dependence of αH2O–OH- by linear 

interpolation between their experimental data at 15 °C and previous 
theoretical data (Thornton, 1962) relevant at 25 °C (green line).

• Additional estimates for αH2O–OH- can be deduced from the low-pH 
experiments of Beck et al. (2005 ◆) and the closed-system precipitation 
experiments of Clark et al. (1992▼).

• These earlier findings were challenged by Zeebe (2020) on the basis that 
the aqueous hydroxide ion is encased in water clusters, which was 
neglected in previous gas-phase calculations.
• The novel quantum-chemical computations of Zeebe (2020) consider 

hydrogen bonds between dissolved OH- and H2O and yield much 
lower αH2O–OH- values and a shallower temperature dependence 
(black lines) than previously suggested.

New experimental data are needed to confirm either finding.

Experimental 
data up to now

Theoretical calculations

Which is correct?
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The experimental setup in this study

Theory:
• In a high pH (> 12) solution, CO2 is transformed into 

bicarbonate anion via the hydroxylation reaction:
1. CO2 (aq) + OH-⇔ HCO3

-

• CO2 absorption is followed by the rapid deprotonation of 
the bicarbonate anion and the subsequent solid carbonate 
precipitation:

2. HCO3
-⇔ H+ + CO3

2-

3. CO3
2- + Ba2+⇔ BaCO3

• If CO2 (aq) is quantitatively precipitated, the precipitate 
directly inherits 2/3 of its oxygen from CO2 and 1/3 from 
the hydroxide ion:

4. δ18OBaCO3 = 2/3 δ18OCO2 + 1/3 δ18OOH-

• By measuring the δ18OBaCO3 value, the δ18OOH- value can be 
calculated.

Practice:
• We performed quantitative BaCO3 precipitation 

experiments using tank CO2 gas and hyperalkaline Ba(OH)2
solutions with known oxygen and carbon isotopic 
compositions.

• On a custom-built vacuum line, pure CO2 gas was 
transferred from a gas tank into a gas syringe.

• To instantly precipitate BaCO3, the CO2 gas in the syringe 
was injected into an Exetainer vial filled with Ba(OH)2
solution and held at the required temperature (1–80 °C).
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Qualitative assessment of the BaCO3 precipitation experiments

• If CO2 is quantitatively precipitated, then
δ13CCO2 = δ13CBaCO3

• Non-quantitative precipitation of CO2 leads to 
kinetic isotope effects in the dissolved 
inorganic carbon pool:

A. CO2 absorption at high pH introduces a 
covariation between δ18OBaCO3 vs 
δ13CBaCO3 values, along a slope of ca. 0.5.

B. Consequently, 103lnαH2O–OH- values are 
shifted towards higher values, along a 
slope of -1.6.

• Two of the precipitation experiments in this 
study are likely affected by kinetic isotope 
effects in the DIC pool — not 100% of the CO2
gas in the syringe precipitated as BaCO3 —
therefore, we excluded them from 
determining the temperature dependence of 
the αH2O–OH- values (X mark excluded samples).

We used two solutions with different 
oxygen isotope compostions, hence the 
bimodal distribution of the δ18O values.
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RESULTS: The oxygen isotope fractionation factor between water and aqueous hydroxide ion

• The blue line is an error-considering linear regression 
fitted on the 20 data points in this study (●■):

103lnαH2O–OH- = -0.037(±0.004) x T + 42.8(±0.2) 

• Our data agree with previous experimental results (▲◆▼).

• Our data show similar temperature dependence as the 
quantum-chemical calculations (black lines) but are shifted 
to higher values by ca. 19‰.
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Kinetic isotope effects on OH-

• Experimental αH2O–OH- data are shifted to higher values 
compared to quantum-chemical computations. We 
hypothesise that this shift is likely related to kinetic isotope 
effects on OH-.

• Such kinetic isotope effects may result from the faster 
diffusion of the light 16OH- isotopologue compared to the 
heavy 18OH- isotopologue, resulting in the preferential 
reaction of the isotopically light OH- during CO2 absorption.

• Using Graham’s law: the diffused OH- has an up to 56‰ 
lower δ18OOH- value.
• The recycling of the OH- pool is effectively 

instantaneous; thus, the preferential consumption of 
16OH- will not induce any Rayleigh-fractionation 
effects, which would isotopically enrich the residual 
OH- pool.
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Conclusions

The experimentally determined equation in this study 
accounts for naturally occurring (and likely temperature 
independent) kinetic isotope effects on OH- that are 
superimposed on thermodynamic equilibrium 103lnαH2O–OH-
values in most natural systems. It is recommended for future 
applications (T in °C):

103lnαH2O–OH- = -0.037(±0.004) x T + 42.8(±0.2) 
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Thank you for reading!
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