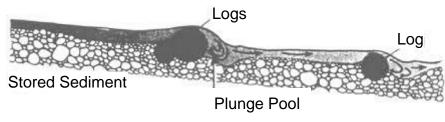


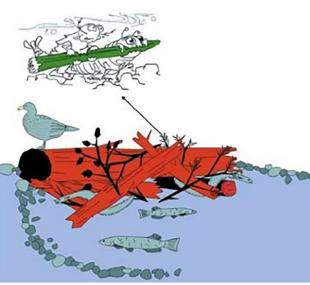
SmartWood_3D

Video footage from drones for Structure-from-Motion photogrammetry – A practical and rapid assessment method for large wood accumulations in rivers?

Gabriel Spreitzer, Isabella Schalko, Robert M. Boes and Volker Weitbrecht EGU General Assembly 2021 - EGU21-4966 28th April 2021



This project has gratefully received funding from the European Union's Horizon 2020 research and innovation programme, in form of a Marie Skłodowska-Curie Individual Fellowship (MSCA-IF), under grant agreement number 887254.

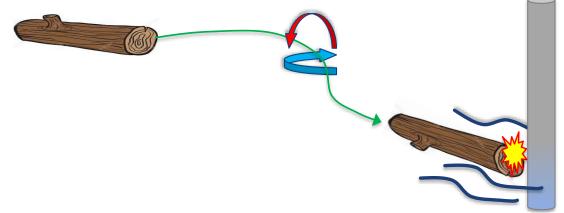

Wood in Rivers

- ✓ Energy dissipation
- Water aeration \checkmark
- ✓ Sediment regulation
- ✓ Food supply
- Increases habitat diversity \checkmark

Brenda Baillie, Farm-Forestry New Zealand (2005)

PhD Thesis, Kyushu Univer

Challenges and Research Questions


- Mobilisation and Transport
 - When and how does LW move?
- Depositional Processes

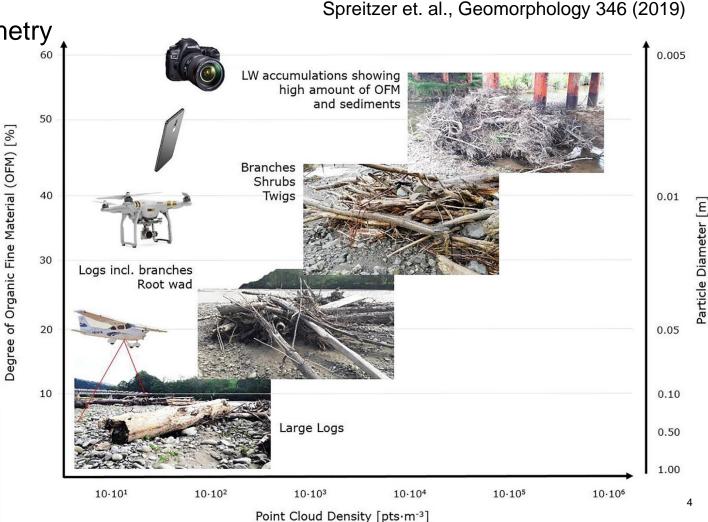
Laboratory of Hydraulics, Hydrology and Glaciology

- Key-logs, orientation and geometries?
- Accumulation volume and porosity?

Risks

- Backwater effects? → change in energy gradient and flooding.
- Changes in channel morphology? → aggradation and erosion
- Impact forces? → damage infrastructure and instream structures.

ETHzürich


Surveying Techniques

- Laser Scanning
- Structure from Motion (SfM) Photogrammetry

- ✓ Standard image sensor
- High photo count
- Low depth of field

Laboratory of Hydraulics, Hydrology and Glaciology

Traditional Data Acquisition

- Requires reference points (e.g., Ground Control Points, CCTags, Chequerboards)
- Requires access to the field site
- Requires time

Rapid Data Acquisition

- Structure from Motion (SfM) Photogrammetry using close-range aerial video footage
- Model scaling via

Close-Range Aerial Video Footage

GPS-Data From Flight Log File

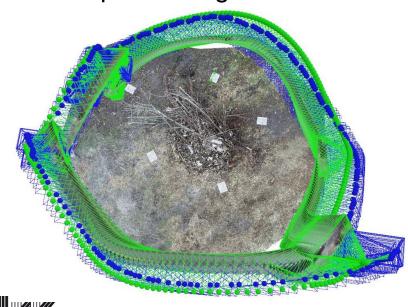
Latitude/X	Longitude/Y	Altitude/Z	Compass heading (°)	Pitch (°)		Gimbal heading (°)	Gimbal pitch (°)
46.4231344	9.01966602	928.861639	106.8	-0.4	0.2	105.4	-46.9

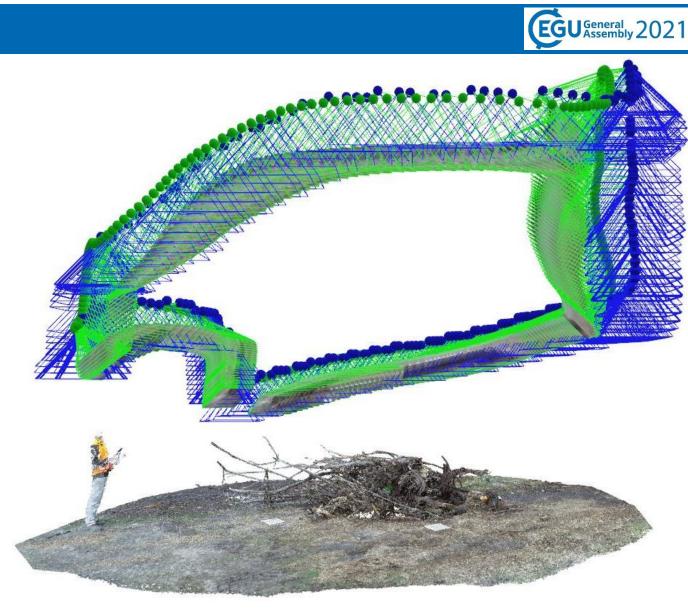
Processing

- Pix4DMapper (version: 4.5.6) Close-range aerial video footage
- ✓ Load Video (~46 s) in **Pix4DMapper** and extract every 3^{rd} image from the video → Photo count: 370 images
- ✓ Extract GPS-data via AIRDATA UAV software (<u>app.airdata.com/flight</u>) → Import into Pix4DMapper
- ✓ Initial processing → Default settings; Camera optimisation: 0.24; Processing time: 1h 18m
- ✓ Process point cloud and mesh model \rightarrow Default settings; Processing times: 2h 15m and 5m
- \checkmark Digital surface model (DSM) generation \rightarrow Settings: Noise filtering: no; Surface smoothing: yes, Type: sharp

 \rightarrow Processing time: 10m

✓ Obtain reference measurements from chequerboards (checkpoints) to control for relative model accuracy


ETHzürich

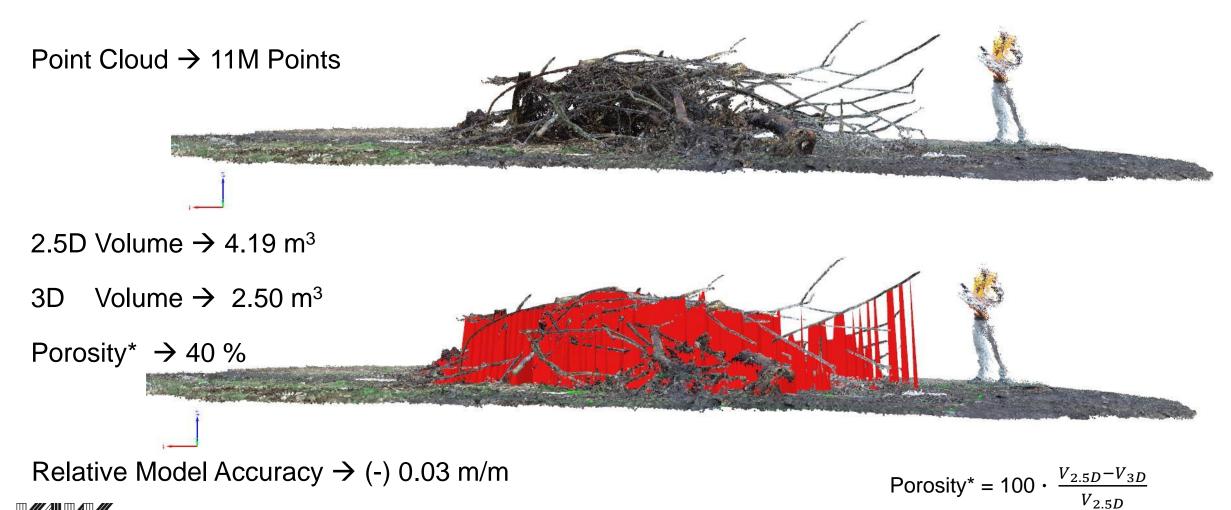

Results

- SfM photogrammetry from video footage
 - ✓ Flight route: circular
 - ✓ Video length: 46 seconds
 - ✓ Images extracted: 370

Laboratory of Hydraulics, Hydrology and Glaciology

- ✓ Final scaling: GPS-data
- Total processing time: 4h

Green: Computed camera location via Pix4DMapper Blue: Camera location from GPS

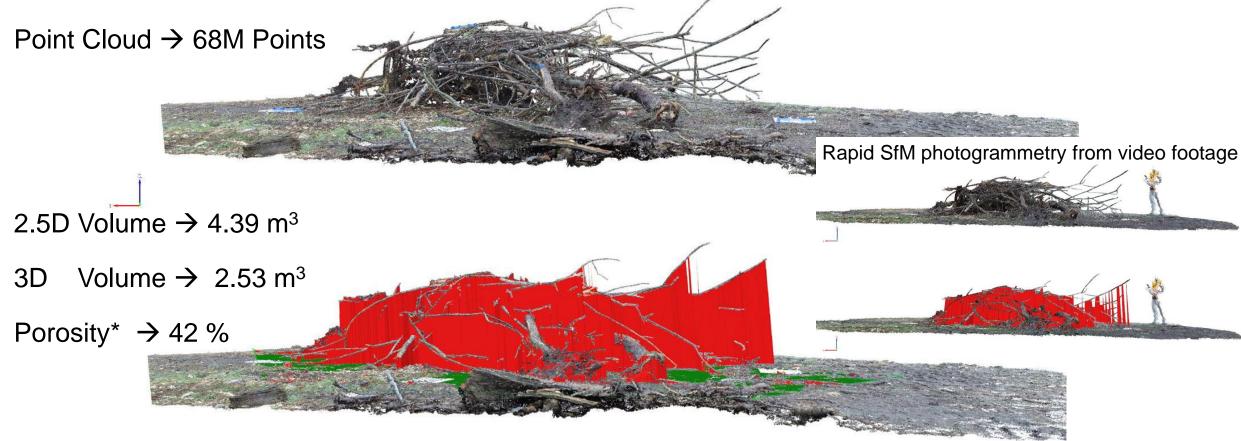

8

Results

SfM photogrammetry from video footage (46 s video; 370 extracted images; scaled from GPS; 4h)

Laboratory of Hydraulics, Hydrology and Glaciology

Note: Porosity estimate based on Spreitzer et al., Journal of Hydrology 581 (2020)



| 10

Results

Traditional SfM photogrammetry from high resolution imagery (326 images; traditionally scaled, 8h)

Relative Model Accuracy \rightarrow <0.001 m/m

Laboratory of Hydraulics, Hydrology and Glaciology

* Note: Porosity estimate based on Spreitzer et al., Journal of Hydrology 581 (2020)

Comparison of Results

Video footage vs. traditional SfM photogrammetry

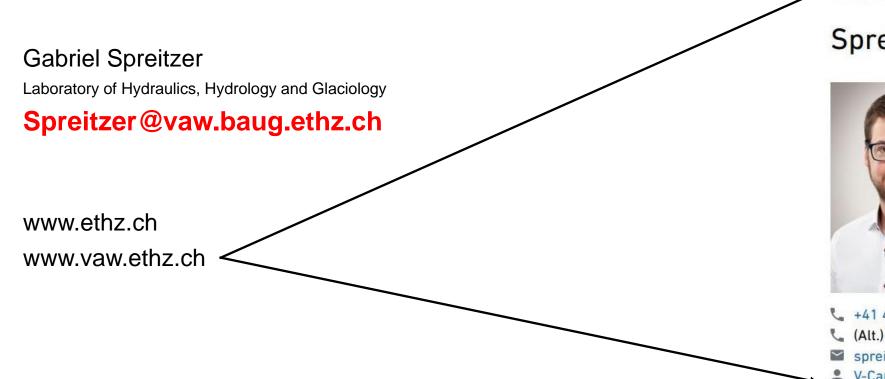
	Video Footage	Traditional Imagery	Conclusion (pro video footage)
Scaling via	GPS-data	Chequerboards	significant cost and time benefits
Point Count	11M	68M	6x less points to handle
2.5D Volume	4.19 m ³	4.39 m ³	<5% 2.5D Volumetric deviation
3D Volume	2.50 m ³	2.53 m ³	<1.5% 3D Volumetric deviation
Porosity	40%	42%	<5% deviation in porosity
Model Accuracy	(-) 0.03 m/m	<0.001 m/m	Lacking in accuracy

ETH zürich

Discussion - Rapid Data Acquisition

- Rapid data acquisition: 46 second flight time
- Scaling from GPS-data \rightarrow No additional GCP, CCTags, or checkerboards required
- No access to immediate field site necessary
- Some challenges involved (not fully explored to date as video footage does not provide GPS-data)
 - No user-friendly GUI available to date
 - Expected inaccuracies due to manual GPS-data extraction and merging with the video footage (extracted images).
 - Further development is required in order to simplify the process of GPS-data extraction and merging with video footage (must be synchronised in time). Software developer may consider a built-in video clipping tool, with access to the flight record log file, which can then be trimmed and extracted together. Significant advance for rapid surveying and mapping.

ETH zürich


Aims and Outlook

- Employ innovative surveying techniques in LW research
- Provide an efficient workflow-pipeline
- Cooperation with and support from software developing companies - meet our needs and create new opportunities
- Improve quality of 3D-models
- Merge gained results for comprehensive understanding of LW dynamics in rivers

Thank you for your attention!

Laboratory of Hydraulics, Hydrology and Glaciology

Homepage > People > Person Detail

Spreitzer, Gabriel, Dr.

Address ETH Zürich Boes, Robert →

Dr. Gabriel Spreitzer Professur für Wasserbau →

HIA → C 14 → Hönggerbergring 26 8093 Zürich Switzerland

+41 44 632 51 03 →
(Alt.)+41 76 262 66 58 →
spreitzer@vaw.baug.ethz.ch →
V-Card (vcf, 1kb) ↓

SmartWood 3D

Video footage from drones for Structure-from-Motion photogrammetry – A practical and rapid assessment method for large wood accumulations in rivers?

Gabriel Spreitzer, Isabella Schalko, Robert M. Boes and Volker Weitbrecht

EGU General Assembly 2021 - EGU21-4966

28th April 2021

This project has gratefully received funding from the European Union's Horizon 2020 research and innovation programme, in form of a Marie Skłodowska-Curie Individual Fellowship (MSCA-IF), under grant agreement number 887254.