Universal Differential Equation for Diffusion-Sorption Problem in Porous Media Flow (EGU21-49)

Timothy Praditia, Sergey Oladyshkin, Wolfgang Nowak

Sharing is encouraged

Introduction

Spatio-temporal problems governed by PDE (i.e. diffusive type problems)

Data

main

0.0

0.2

0.4

х

0.6

0.8

1.0

10000

8000

6000

4000

2000

t

Methods

Application

Contaminant diffusion-sorption in porous media

 $\frac{\partial c}{\partial t} = \frac{D_e}{R} \frac{\partial^2 c}{\partial x^2}$

$$\frac{\partial c_t}{\partial t} = D_e \phi \frac{\partial^2 c}{\partial x^2}$$

• *R* defined with three different sorption isotherms: linear, Freundlich, Langmuir

• Dirichlet and Cauchy BC

• Available data: breakthrough curve and destructive sampling

- *c* : dissolved TCE concentration
 - : total TCE concentration
- *D_e* : effective diffusion coefficient
 - : retardation factor
- ϕ : porosity

 c_t

R

Methods

Hybrid model

Physics-informed structure:

- Finite Volume Method discretization (spatio)
- Neural Ordinary Differential Equation (temporal)

 \mathcal{F} : Flux Kernel (calculate fluxes and BCs, learn constitutive relationships)

 \mathcal{S} : State Kernel (learn reaction term, integrate with ODE solver)

Similar breakthrough curves, but...

Retardation Factor

we can still learn the difference in the retardation factor, ...

Results

Reconstruction of full field solution

Back to

main

Next

and reconstruct the solution at all location x!

Results

Experimental data (core samples extracted from same geographical

area)

Test with core #1

References & Acknowledgement

References:

- R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud. Neural ordinary differential equations. In *Advances in Neural Information Processing Systems*, volume 31, 2018.
- W. Nowak and A. Guthke. Entropy-based experimental design for optimal model discrimination in the geosciences. *Entropy*, 18(11), 2016.
- T. Praditia, M. Karlbauer, S. Otte, S. Oladyshkin, M. V. Butz and W. Nowak. Finite Volume Neural Network: Modeling Subsurface Contaminant Transport. In *Deep Learning for Simulation, International Conference on Learning Representations Workshop*, 2021.
- C. Rackauckas, Y. Ma, J, Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan and A. Edelman. Universal differential equations for scientific machine learning. *arXiv preprint*, 2020.
- M. Raissi, P. Perdikaris and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686-707, 2019.

Acknowledgement:

This work is funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2075 – 390740016. We acknowledge the support by the Stuttgart Center for Simulation Science (SimTech). Codes and data that are used for this paper can be found in the repository <u>https://github.com/timothypraditia/finn</u>.

Contact:

Timothy Praditia <u>timothy.praditia@iws.uni-stuttgart.de</u> <u>https://www.iws.uni-stuttgart.de/en/institute/team/Praditia-00001/</u>

